scholarly journals Birthweight DNA Methylation Signatures in Infant Saliva 

Author(s):  
Chiara Moccia ◽  
Maja Popovic ◽  
Elena Isaevska ◽  
Valentina Fiano ◽  
Morena Trevisan ◽  
...  

Abstract Background Low birthweight has been repeatedly associated with long-term adverse health outcomes and many non-communicable diseases. Our aim was to investigate whether cord blood birthweight-associated CpG sites identified by the PACE Consortium replicate in infant saliva, and to explore saliva-specific DNA methylation signatures of birthweight. Methods DNA methylation was assessed using Infinium HumanMethylation450K array in 141 saliva samples collected from children of the NINFEA birth cohort at an average age of 10.8 (range 7-17) months. The association analyses between birthweight and DNA methylation variations were carried out using robust linear regression models both in replication and exploratory EWAS analyses.Results None of the cord blood birthweight-associated CpGs identified by the PACE Consortium was replicated in infant saliva. In saliva EWAS analyses, birthweight as continuous variable was associated with DNA methylation variation in 44 CpG sites, while being born small for gestational age (SGA, lower 10th percentile of birthweight for gestational age according to WHO reference charts) was associated with DNA methylation variation in 44 CpGs (all false discovery rate p-values<0.05), with only one overlapping CpG between the two analyses. Despite no overlap with PACE results at the CpG level, two of the top saliva birthweight CpGs mapped at genes identified also by the PACE consortium (MACROD1 and RPTOR).Conclusion Our study provides an indication of the birthweight and SGA epigenetic salivary signatures in children around 10 months of age. DNA methylation signatures in cord blood may not be comparable with saliva DNA methylation signatures at about 10 months of age, suggesting that the birthweight epigenetic marks are likely time and tissue specific.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chiara Moccia ◽  
Maja Popovic ◽  
Elena Isaevska ◽  
Valentina Fiano ◽  
Morena Trevisan ◽  
...  

Abstract Background Low birthweight has been repeatedly associated with long-term adverse health outcomes and many non-communicable diseases. Our aim was to look-up cord blood birthweight-associated CpG sites identified by the PACE Consortium in infant saliva, and to explore saliva-specific DNA methylation signatures of birthweight. Methods DNA methylation was assessed using Infinium HumanMethylation450K array in 135 saliva samples collected from children of the NINFEA birth cohort at an average age of 10.8 (range 7–17) months. The association analyses between birthweight and DNA methylation variations were carried out using robust linear regression models both in the exploratory EWAS analyses and in the look-up of the PACE findings in infant saliva. Results None of the cord blood birthweight-associated CpGs identified by the PACE Consortium was associated with birthweight when analysed in infant saliva. In saliva EWAS analyses, considering a false discovery rate p-values < 0.05, birthweight as continuous variable was associated with DNA methylation in 44 CpG sites; being born small for gestational age (SGA, lower 10th percentile of birthweight for gestational age according to WHO reference charts) was associated with DNA methylation in 44 CpGs, with only one overlapping CpG between the two analyses. Despite no overlap with PACE results at the CpG level, two of the top saliva birthweight CpGs mapped at genes associated with birthweight with the same direction of the effect also in the PACE Consortium (MACROD1 and RPTOR). Conclusion Our study provides an indication of the birthweight and SGA epigenetic salivary signatures in children around 10 months of age. DNA methylation signatures in cord blood may not be comparable with saliva DNA methylation signatures at about 10 months of age, suggesting that the birthweight epigenetic marks are likely time and tissue specific.


2014 ◽  
Vol 5 (4) ◽  
pp. 288-298 ◽  
Author(s):  
K. Broberg ◽  
S. Ahmed ◽  
K. Engström ◽  
M. B. Hossain ◽  
S. Jurkovic Mlakar ◽  
...  

Early-life inorganic arsenic exposure influences not only child health and development but also health in later life. The adverse effects of arsenic may be mediated by epigenetic mechanisms, as there are indications that arsenic causes altered DNA methylation of cancer-related genes. The objective was to assess effects of arsenic on genome-wide DNA methylation in newborns. We studied 127 mothers and cord blood of their infants. Arsenic exposure in early and late pregnancy was assessed by concentrations of arsenic metabolites in maternal urine, measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Genome-wide 5-methylcytosine methylation in mononuclear cells from cord blood was analyzed by Infinium HumanMethylation450K BeadChip. Urinary arsenic in early gestation was associated with cord blood DNA methylation (Kolmogorov–Smirnov test, P-value<10–15), with more pronounced effects in boys than in girls. In boys, 372 (74%) of the 500 top CpG sites showed lower methylation with increasing arsenic exposure (rS-values>−0.62), but in girls only 207 (41%) showed inverse correlation (rS-values>−0.54). Three CpG sites in boys (cg15255455, cg13659051 and cg17646418), but none in girls, were significantly correlated with arsenic after adjustment for multiple comparisons. The associations between arsenic and DNA methylation were robust in multivariable-adjusted linear regression models. Much weaker associations were observed with arsenic exposure in late compared with early gestation. Pathway analysis showed overrepresentation of affected cancer-related genes in boys, but not in girls. In conclusion, early prenatal arsenic exposure appears to decrease DNA methylation in boys. Associations between early exposure and DNA methylation might reflect interference with de novo DNA methylation.


2021 ◽  
Author(s):  
Alexander Neumann ◽  
Jean-Baptiste Pingault ◽  
Janine F. Felix ◽  
Vincent W. V. Jaddoe ◽  
Henning Tiemeier ◽  
...  

Background: DNA methylation is an epigenetic mechanism involved in human development. Numerous epigenome-wide association studies (EWAS) have investigated the associations of DNA methylation at single CpG sites with childhood outcomes. However, the overall contribution of DNA methylation across the genome (R2Methylation) towards childhood phenotypes is unknown. An estimate of R2Methylation would provide context regarding the importance of DNA methylation explaining variance in health outcomes. Methods: We estimated the variance explained by epigenome-wide cord blood methylation (R2Methylation) for five childhood phenotypes: gestational age, birth weight, and body mass index (BMI), IQ and ADHD symptoms at school age. We adapted a genome-based restricted maximum likelihood (GREML) approach with cross-validation (CV) to DNA methylation data and applied it in two population-based birth cohorts: ALSPAC (n=775) and Generation R (n=1382). Results: Using information from >470,000 autosomal probes we estimated that DNA methylation at birth explains 45% (SDCV = 0.07) of gestational age variance and 16% (SDCV = 0.05) of birth weight variance. The R2Methylation estimates for BMI, IQ and ADHD symptoms at school age estimates were near 0% across almost all cross-validation iterations. Conclusions: The results suggest that cord blood methylation explains a moderate to large degree of variance in gestational age and birth weight, in line with the success of previous EWAS in identifying numerous CpG sites associated with these phenotypes. In contrast, we could not obtain a reliable estimate for school-age BMI, IQ and ADHD symptoms. This may reflect a null bias due to insufficient sample size to detect variance explained in more weakly associated phenotypes, although the true R2Methylation for these phenotypes is likely below that of gestational age and birth weight when using DNA methylation at birth.


2020 ◽  
Vol 13 ◽  
pp. 251686572093866 ◽  
Author(s):  
Christine A Rygiel ◽  
Dana C Dolinoy ◽  
Wei Perng ◽  
Tamara R Jones ◽  
Maritsa Solano ◽  
...  

Gestational exposure to lead (Pb) adversely impacts offspring health through multiple mechanisms, one of which is the alteration of the epigenome including DNA methylation. This study aims to identify differentially methylated CpG sites associated with trimester-specific maternal Pb exposure in umbilical cord blood (UCB) leukocytes. Eighty-nine mother-child dyads from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) longitudinal birth cohorts with available UCB samples were selected for DNA methylation analysis via the Infinium Methylation EPIC BeadChip, which quantifies methylation at >850 000 CpG sites. Maternal blood lead levels (BLLs) during each trimester (T1: 6.56 ± 5.35 µg/dL; T2: 5.93 ± 5.00 µg/dL; T3: 6.09 ± 4.51 µg/dL), bone Pb (patella: 11.8 ± 9.25 µg/g; tibia: 11.8 ± 6.73 µg/g), a measure of cumulative Pb exposure, and UCB Pb (4.86 ± 3.74 µg/dL) were measured. After quality control screening, data from 786 024 CpG sites were used to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) by Pb biomarkers using separate linear regression models, controlling for sex and estimated UCB cell-type proportions. We identified 3 DMPs associated with maternal T1 BLL, 2 with T3 BLL, and 2 with tibia bone Pb. We identified one DMR within PDGFRL associated with T1 BLL, one located at chr6:30095136-30095295 with T3 BLL, and one within TRHR with tibia bone Pb (adjusted P-value < .05). Pathway analysis identified 15 overrepresented gene pathways for differential methylation that overlapped among all 3 trimesters with the largest overlap between T1 and T2 (adjusted P-value < .05). Pathways of interest include nodal signaling pathway and neurological system processes. These data provide evidence for differential methylation by prenatal Pb exposure that may be trimester-specific.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Giulietta S. Monasso ◽  
Leanne K. Küpers ◽  
Vincent W. V. Jaddoe ◽  
Sandra G. Heil ◽  
Janine F. Felix

Abstract Background Circulating folate, vitamin B12 and homocysteine concentrations during fetal development have been associated with health outcomes in childhood. Changes in fetal DNA methylation may be an underlying mechanism. This may be reflected in altered epigenetic aging of the fetus, as compared to chronological aging. The difference between gestational age derived in clinical practice and gestational age predicted from neonatal DNA methylation data is referred to as gestational age acceleration. Differences in circulating folate, vitamin B12 and homocysteine concentrations during fetal development may be associated with gestational age acceleration. Results Up to 1346 newborns participating in the Generation R Study, a population-based prospective cohort study, had both cord blood DNA methylation data available and information on plasma folate, serum total and active B12 and plasma homocysteine concentrations, measured in early pregnancy and/or in cord blood. A subgroup of 380 newborns had mothers with optimal pregnancy dating based on a regular menstrual cycle and a known date of last menstrual period. For comparison, gestational age acceleration was calculated based the method of both Bohlin and Knight. In the total study population, which was more similar to Bohlin’s training population, one standard deviation score (SDS) higher maternal plasma homocysteine concentrations was nominally associated with positive gestational age acceleration [0.07 weeks, 95% confidence interval (CI) 0.02, 0.13] by Bohlin’s method. In the subgroup with pregnancy dating based on last menstrual period, the method that was also used in Knight’s training population, one SDS higher cord serum total and active B12 concentrations were nominally associated with negative gestational age acceleration [(− 0.16 weeks, 95% CI − 0.30, − 0.02) and (− 0.15 weeks, 95% CI − 0.29, − 0.01), respectively] by Knight’s method. Conclusions We found some evidence to support associations of higher maternal plasma homocysteine concentrations with positive gestational age acceleration, suggesting faster epigenetic than clinical gestational aging. Cord serum vitamin B12 concentrations may be associated with negative gestational age acceleration, indicating slower epigenetic than clinical gestational aging. Future studies could examine whether altered fetal epigenetic aging underlies the associations of circulating homocysteine and vitamin B12 blood concentrations during fetal development with long-term health outcomes.


Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Juntao Hu ◽  
Sara J S Wuitchik ◽  
Tegan N Barry ◽  
Heather A Jamniczky ◽  
Sean M Rogers ◽  
...  

Abstract Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24–35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Cuilin Zhang ◽  
Jing Wu ◽  
Marion Ouidir ◽  
Stefanie Hinkle ◽  
Fasil Ayele

Background: Accumulating evidence support the intergenerational impacts of diet in pregnancy. The underlying mechanisms, however, remain unclear. Placental epigenetic mechanisms may be involved although data from human epidemiological studies are sparse. We aimed to investigate associations of dietary quality in pregnancy with epigenome-wide placental DNA methylation in a multiracial pregnancy cohort. Methods: DNA methylation was measured using the Illumina Infinium Human Methylation450 Beadchip on placentas obtained at delivery from 301 pregnant women who participated in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Fetal Growth Studies-Singleton cohort. Dietary information during periconception and early first trimester was collected using food frequency questionnaires, and diet in the second and third trimester was collected using a 24-hour dietary recall during four study visits. Scores for adherence to three healthy dietary patterns, alternate Healthy Eating Index (aHEI), alternate Mediterranean Diet (aMED), and Dietary Approaches to Stop Hypertension (DASH), were calculated. For associations of each dietary pattern score with methylation, we conducted analyses using robust linear regression models after the adjustment for age, pre-pregnancy body mass index, race/ethnicity, physical activity, total energy intakes, and population stratification. Genes annotating the top significant CpG sites (false discovery rate (FDR) adjusted P<0.05) were queried for enrichment of functional pathways using the Ingenuity Pathway Analysis tool. Results: Adherence to aHEI was significantly associated with methylation of 8 CpG sites, with the most significant association manifested in cg16724319- MDH1B (P=1.9x10 -10 ). Adherence to aMED was related to methylation of 14 CpG sites, with the most significant association manifested in cg07835181- CLCN7 (P=1.7x10 -11 ). DASH was significantly related to 33 CpG sites, with the most significant association manifested in cg26292547- REV3L (P=4.4x10 -10 ). Further, genes annotating the significant CpG sites were enriched in pathways related to cardiovascular and nervous system development and function, cancer, organismal injury and abnormalities, and reproductive system diseases. Conclusion: Findings from the epigenome wide study suggest that overall dietary quality in pregnancy is associated with placental DNA methylation changes at different loci potentially related to cardiovascular, neurological, reproductive, and cancer phenotypes.


Epigenetics ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. 923-940 ◽  
Author(s):  
Anne K. Bozack ◽  
Andres Cardenas ◽  
Quazi Quamruzzaman ◽  
Mahmuder Rahman ◽  
Golam Mostofa ◽  
...  

Epigenetics ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. 1243-1258 ◽  
Author(s):  
Timothy P. York ◽  
Shawn J. Latendresse ◽  
Colleen Jackson-Cook ◽  
Dana M. Lapato ◽  
Sara Moyer ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jonathan A Heiss ◽  
Martha M Téllez-Rojo ◽  
Guadalupe Estrada-Gutiérrez ◽  
Lourdes Schnaas ◽  
Chitra Amarasiriwardena ◽  
...  

Abstract The effects of prenatal lead exposure on child development include impaired growth and cognitive function. DNA methylation might be involved in the underlying mechanisms and previous epigenome-wide association studies reported associations between lead exposure during pregnancy and cord blood methylation levels. However, it is unclear during which developmental stage lead exposure is most harmful. Cord blood methylation levels were assayed in 420 children from a Mexican pre-birth cohort using the Illumina Infinium MethylationEPIC microarray. Lead concentrations were measured in umbilical cord blood as well as in blood samples from the mothers collected at 2nd and 3rd trimester and delivery using inductively coupled plasma-mass spectrometry. In addition, maternal bone lead levels were measured in tibia and patella using X-ray fluorescence. Comprehensive quality control and preprocessing of microarray data was followed by an unbiased restriction to methylation sites with substantial variance. Methylation levels at 202 111 cytosine-phosphate-guanine sites were regressed on each exposure adjusting for child sex, leukocyte composition, batch variables, gestational age, birthweight-for-gestational-age, maternal age, maternal education and mode of delivery. We find no association between prenatal lead exposure and cord blood methylation. This null result is strengthened by a sensitivity analysis showing that in the same dataset known biomarkers for birthweight-for-gestational-age can be recovered and the fact that phenotypic associations with lead exposure have been described in the same cohort.


Sign in / Sign up

Export Citation Format

Share Document