scholarly journals Biomechanical Tests and Finite Element Analyses of Pelvic Stability using Bilateral Single Iliac Screw with Different Channels in Lumbo-iliac Fixation

Author(s):  
Yangyang Sun ◽  
Ying Fu ◽  
Fanxiao Liu ◽  
Huanzhi Ma ◽  
Wen Zhang ◽  
...  

Abstract Background: In lumbo-iliac fixation, the iliac screw can be placed in a number of locations and directions, and multiple screws can be placed to enhance the fixation effect. At present, there is no uniform standard for the placement of single iliac screw. Biomechanical tests and finite element analyses were used to compare the effect of bilateral single iliac screw with three channels on pelvic stability in lumbo-iliac fixation, so as to provide a basis for determining the best single iliac screw channel.Methods: Five adult embalmed cadaver pelvic specimens were selected. Unstable Tile C1 pelvic injury model (pubic symphysis separation and left sacral Denis II fracture) was established. The pubic symphysis was fixed with five-hole reconstruction plate. Lumbo-iliac fixation for the treatment of pelvic posterior ring injury: three channels of bilateral single iliac screw (channel A from PSIS to AIIS, channel B from 1 cm medial and 1 cm caudal of PSIS to AIIS, channel C from 2 cm below PSIS to AIIS). At the same time, the finite element model of unstable pelvic posterior ring injury treated with lumbo-iliac fixation was established, which were used to analyze and explore the effect of bilateral single iliac screw with three channels on the biomechanical stability of the pelvis, including the stress distribution and the maximum Von Mises stress of internal fixation, vertebral body and ilium.Results: Biomechanical tests revealed that under vertical compression load, the compressive stiffness of pelvic specimens fixed with three channels of bilateral single iliac screw was lower than that of complete pelvic specimens (P < 0.05). The vertical displacement fixed by channel B was smaller than that fixed by channel A and channel C; however, there was no significant difference between channel B and channel A (P > 0.05). The compressive stiffness fixed by channel B was better than that fixed by channel A and channel C. Under torsional load, the torsional stiffness fixed by channel B was stronger than that fixed by channel A and channel C. Finite element analyses conformed that the maximum Von Mises stress of the internal fixator fixed in channel B under the conditions of vertical, forward bending, backward extension, left bending, left rotating and right bending were significantly lower than that fixed in channel A and channel C. Under various working conditions, the maximum Von Mises stress of the internal fixture of channel B was less than that of channel A. In terms of the maximum Von Mises stress of the vertebral body and iliac, compared with the other two iliac screw channels, the overall stress distribution fixed by channel B was more reasonable.Conclusions: Bilateral single iliac screw with three channels in lumbo-iliac fixation could effectively restore pelvic stability. The construct stiffness of the channel from 1cm medial and 1cm caudal of PSIS to AIIS is better than that of the other two channels. This channel has the advantages of good biomechanical stability, reasonable stress distribution, small maximum Von Mises stress of internal fixation, strong fatigue resistance and not easy to break screws and robs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1708 ◽  
Author(s):  
Maciej Zarow ◽  
Mirco Vadini ◽  
Agnieszka Chojnacka-Brozek ◽  
Katarzyna Szczeklik ◽  
Grzegorz Milewski ◽  
...  

By means of a finite element method (FEM), the present study evaluated the effect of fiber post (FP) placement on the stress distribution occurring in endodontically treated upper first premolars (UFPs) with mesial–occlusal–distal (MOD) nanohybrid composite restorations under subcritical static load. FEM models were created to simulate four different clinical situations involving endodontically treated UFPs with MOD cavities restored with one of the following: composite resin; composite and one FP in the palatal root; composite and one FP in the buccal root; or composite and two FPs. As control, the model of an intact UFP was included. A simulated load of 150 N was applied. Stress distribution was observed on each model surface, on the mid buccal–palatal plane, and on two horizontal planes (at cervical and root-furcation levels); the maximum Von Mises stress values were calculated. All analyses were replicated three times, using the mechanical parameters from three different nanohybrid resin composite restorative materials. In the presence of FPs, the maximum stress values recorded on dentin (in cervical and root-furcation areas) appeared slightly reduced, compared to the endodontically treated tooth restored with no post; in the same areas, the overall Von Mises maps revealed more favorable stress distributions. FPs in maxillary premolars with MOD cavities can lead to a positive redistribution of potentially dangerous stress concentrations away from the cervical and the root-furcation dentin.


Paleobiology ◽  
2019 ◽  
Vol 45 (1) ◽  
pp. 182-200 ◽  
Author(s):  
François Clarac ◽  
Florent Goussard ◽  
Vivian de Buffrénil ◽  
Vittorio Sansalone

AbstractThis paper aims at assessing the influence of the bone ornamentation and, specifically, the associated loss of bone mass on the mechanical response of the crocodylomorph osteoderms. To this end, we have performed three-dimensional (3D) modeling and a finite element analysis on a sample that includes both extant dry bones and well-preserved fossils tracing back to the Late Triassic. We simulated an external attack under various angles on the apical surface of each osteoderm and further repeated the simulation on an equivalent set of smoothed 3D-modeled osteoderms. The comparative results indicated that the presence of an apical sculpture has no significant influence on the von Mises stress distribution in the osteoderm volume, although it produces a slight increase in its numerical score. Moreover, performing parametric analyses, we showed that the Young's modulus of the osteoderm, which may vary depending on the bone porosity, the collagen fiber orientation, or the calcification density, has no impact on the von Mises stress distribution inside the osteoderm volume. As the crocodylomorph bone ornamentation is continuously remodeled by pit resorption and secondary bone deposition, we assume that the apical sculpture may be the outcome of a trade-off between the bone mechanical resistance and the involvement in physiological functions. These physiological functions are indeed based on the setup of a bone superficial vessel network and/or the recurrent release of mineral elements into the plasma: heat transfers during basking and respiratory acidosis buffering during prolonged apnea in neosuchians and teleosaurids; compensatory homeostasis in response to general calcium deficiencies. On a general morphological basis, the osteoderm geometric variability within our sample leads us to assess that the global osteoderm geometry (whether square or rectangular) does not influence the von Mises stress, whereas the presence of a dorsal keel would somewhat reduce the stress along the vertical axis.


2013 ◽  
Vol 07 (04) ◽  
pp. 484-491 ◽  
Author(s):  
Wagner Moreira ◽  
Caio Hermann ◽  
Jucélio Tomás Pereira ◽  
Jean Anacleto Balbinoti ◽  
Rodrigo Tiossi

ABSTRACT Objective: The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Materials and Methods: Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). Results: The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Conclusions: Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.


2020 ◽  
Author(s):  
Kazuhiro Hasegawa ◽  
Tamon Kabata ◽  
Yoshitomo Kajino ◽  
Daisuke Inoue ◽  
Jiro Sakamoto ◽  
...  

Abstract Background Finite element analysis (FEA) has been previously applied for the biomechanical analysis of acetabular dysplasia and osteotomy. However, until now, there have been little reports on the use of FEA to evaluate the effects of pelvic tilt on stress distribution in the acetabulum. Methods We used the Mechanical Finder Ver. 7.0 (RCCM, Inc., Japan) to construct finite element models based on 3D-CT data of patients, and designed dysplasia, borderline, and normal pelvic models. For analysis, body weight was placed on the sacrum and the load of the flexor muscles of the hip joint was placed on the ilium. The pelvic tilt was based on the anterior pelvic plane, and the pelvic tilt angles were -20°, 0°, and 20°. The load of the flexor muscle of the hip joint was calculated using the moment arm equation.Results All three models showed the highest values of von Mises stress in the -20° pelvic tilt angle, and the lowest in the 20° angle. Stress distribution concentrated in the load-bearing area. The maximum values of von Mises stress in the borderline at pelvic tilt angles of -20° was 3.5Mpa, and in the dysplasia at pelvic tilt angles of 0° was 3.1Mpa. Conclusions The pelvic tilt angle of -20° of the borderline model showed equal maximum values of von Mises stress than the dysplasia model of pelvic tilt angle of 0°, indicating that pelvic retroversion of -20° in borderline is a risk factor for osteoarthritis of the hip joints, similar to dysplasia.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245800
Author(s):  
Fabricia Teixeira Barbosa ◽  
Luiz Carlos Silveira Zanatta ◽  
Edélcio de Souza Rendohl ◽  
Sergio Alexandre Gehrke

Objectives The aim of this in vitro study was to evaluate the stress distribution on three implant models with narrow and extra-narrow diameters using the finite element method (FEA). Materials and methods Dental implants of extra-narrow diameter of 2.5 mm for a one-piece implant (group G1), a narrow diameter of 3.0 mm for a one-piece implant (group G2) and a narrow diameter of 3.5 mm for a two-piece implant with a Morse taper connection (group G3). A three-dimensional model was designed with cortical and cancellous bone, a crown and an implant/abutment set of each group. Axial and angled (30°) loads of 150 N was applied. The equivalent von Mises stress was used for the implants and peri-implant bone plus the Mohr-Coulomb analysis to confirm the data of the peri-implant bone. Results In the axial load, the maximum stress value of the cortical bone for the group G1 was 22.35% higher than that the group G2 and 321.23% than the group G3. Whereas in angled load, the groups G1 and G2 showing a similar value (# 3.5%) and a highest difference for the group G3 (391.8%). In the implant structure, the group G1 showed a value of 2188MPa, 93.6% higher than the limit. Conclusions The results of this study show that the extra-narrow one-piece implant should be used with great caution, especially in areas of non-axial loads, whereas the one- and two-piece narrow-diameter implants show adequate behavior in both directions of the applied load.


Author(s):  
Vinod Bandela ◽  
Ram Basany ◽  
Anil Kumar Nagarajappa ◽  
Sakeenabi Basha ◽  
Saraswathi Kanaparthi ◽  
...  

Purpose: To analyze the stress distribution and the direction of force in external hexagonal implant with crown in three different angulations. Materials and Methods: A total of 60 samples of geometric models were used to analyze von Mises stress and direction of force with 0-, 5-, and 10-degree lingual tilt. Von Mises stress and force distribution were evaluated at nodes of hard bone, and finite element analysis was performed using ANSYS 12.1 software. For calculating stress distribution and force, we categorized and labeled the groups as Implant A1, Implant A2, and Implant A3, and Implant B1, Implant B2, and Implant B3 with 0-, 5-, and 10-degree lingual inclinations, respectively. Inter- and intra-group comparisons were performed using ANOVA test. A p-value of ≤0.05 was considered statistically significant. Results: In all the three models, overall maximum stress was found in implant model A3 on the implant surface (86.61), and minimum was found on model A1 in hard bone (26.21). In all the three models, the direction of force along three planes was maximum in DX (0.01025) and minimum along DZ (0.002) direction with model B1. Conclusion: Maximum von Mises stress and the direction of force in axial direction was found at the maximum with the implant of 10 degrees angulation. Thus, it was evident that tilting of an implant influences the stress concentration and force in external hex implants.


2019 ◽  
Vol 27 (3) ◽  
pp. 230949901987607
Author(s):  
Xiaoreng Feng ◽  
Weichen Qi ◽  
Chengyong Wang ◽  
Frankie Leung ◽  
Bin Chen

Objective: Although the optimal screw tightening sequence is a common question orthopaedists encounter during fractures fixation with a dynamic compression plate (DCP), the effect of the screw tightening sequence on the stability of the plate has never been explored. This study explores the effect of the screw tightening sequence on the stress distribution of a DCP using a finite element method. Methods: Idealized finite element analysis models of the femoral diaphysis with six-hole or eight-hole DCPs were constructed. The screw tightening preload was simulated using ‘bolt load’ in ABAQUS. Two screw tightening sequences were studied for the six-hole plate and six sequences were studied for the eight-hole plate. U magnitude and Von Mises stress were used to evaluate the deformation and stress distribution of the plate, respectively. Deformation and stress distribution plots from different sequences were compared. Results: The different screw tightening sequences showed different deformation processes, while all had the same final deformation after all the screws were tightened. Each screw tightening step of different tightening sequences showed different stress distributions in the plate, while all had the same stress distribution after all the screws were tightened. Conclusion: Using different screw tightening sequences to fix the same DCP can produce the same stability, which means in terms of fixation stability, after the two screws nearest to the fracture line are tightened, surgeons do not need to hesitate about the order in which the rest screws should be inserted during the surgery.


2020 ◽  
Vol 54 (2) ◽  
pp. 106-114
Author(s):  
Udita Thakkar ◽  
Neeraj S. Patil ◽  
Ajay P. Thakkar ◽  
Shrikant S. Chitko ◽  
Pratik Jaltare

Introduction: Correction of deep bite is one of the major challenges of orthodontic treatment. Mini-implants provide stable intra-oral anchorage and facilitate the maxillary incisors to be intruded without the usual side. The purpose of this finite element study was to evaluate the stress distribution around the mini-implant during maxillary anterior intrusion under different conditions of different angulations and different positions of implant. Material and Methods: Finite element analysis was carried out. Stress under the following 4 conditions was analyzed: (a) single central implant placed at 90°, (b) single central implant placed at 120°, (c) bilaterally placed implant at 90°, and (d) bilaterally placed implant at 120°. Results: The displacement seen with 90° angulation in the single implant case is less compared with the 120° angulation case for all the 6 maxillary anterior teeth. Also, in the bilateral implant case, the Von Mises stress is less when the 90° angulation case is compared to 120° angulation case. But in bilaterally placed implant, the stress gets distributed evenly in the anterior region. The stress in 90° angulation cases seems to be concentrated at the center. Conclusion: Stresses measured on the teeth are less and distributed more evenly when the point of force application is bilateral. It was also observed that the stress increases with increase in the angulation of the implant. As the contact between the implant and the bone increases, the stability increases. Hence, the implant should be obliquely inserted into the bone. Concentrated stresses are not favorable as they can increase the risk of bone and root resorption.


Sign in / Sign up

Export Citation Format

Share Document