scholarly journals Non-Hermitian Skin Custers from Strong Interactions

Author(s):  
Ching Hua Lee ◽  
Ruizhe Shen

Abstract Strong, non-perturbative interactions often lead to new exciting physics, as epitomized by emergent anyons from the Fractional Quantum hall effect. Within the actively investigated domain of non-Hermitian physics, we discover a new family of states known as non-Hermitian skin clusters. Taking distinct forms as Vertex, Topological, Interface, Extended and Localized skin clusters, they generically originate from asymmetric correlated hoppings on a lattice, in the strongly interacting limit with quenched single-body energetics. Distinct from non-Hermitian skin modes which accumulate at boundaries, our skin clusters are predominantly translation invariant particle clusters. As purely interacting phenomena, they fall outside the purview of generalized Brillouin zone analysis, although our effective lattice formulation provides alternative analytic and topological characterization. Non-Hermitian skin clusters fundamentally originate from the fragmentation structure of the Hilbert space, and may thus be of significant interest in modern many-body contexts like the ETH and quantum scars.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tsuneya Yoshida ◽  
Koji Kudo ◽  
Yasuhiro Hatsugai

AbstractWe demonstrate the emergence of a topological ordered phase for non-Hermitian systems. Specifically, we elucidate that systems with non-Hermitian two-body interactions show a fractional quantum Hall (FQH) state. The non-Hermitian Hamiltonian is considered to be relevant to cold atoms with dissipation. We conclude the emergence of the non-Hermitian FQH state by the presence of the topological degeneracy and by the many-body Chern number for the ground state multiplet showing Ctot = 1. The robust topological degeneracy against non-Hermiticity arises from the manybody translational symmetry. Furthermore, we discover that the FQH state emerges without any repulsive interactions, which is attributed to a phenomenon reminiscent of the continuous quantum Zeno effect.


Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 55-57 ◽  
Author(s):  
A. Kou ◽  
B. E. Feldman ◽  
A. J. Levin ◽  
B. I. Halperin ◽  
K. Watanabe ◽  
...  

The nature of fractional quantum Hall (FQH) states is determined by the interplay between the Coulomb interaction and the symmetries of the system. The distinct combination of spin, valley, and orbital degeneracies in bilayer graphene is predicted to produce an unusual and tunable sequence of FQH states. Here, we present local electronic compressibility measurements of the FQH effect in the lowest Landau level of bilayer graphene. We observe incompressible FQH states at filling factors ν = 2p + 2/3, with hints of additional states appearing at ν = 2p + 3/5, where p = –2, –1, 0, and 1. This sequence breaks particle-hole symmetry and obeys a ν → ν + 2 symmetry, which highlights the importance of the orbital degeneracy for many-body states in bilayer graphene.


2013 ◽  
Vol 28 (02) ◽  
pp. 1441002 ◽  
Author(s):  
M. HAFEZI

In this article, we review the recent progress in the implementation of synthetic gauge fields for photons and the investigation of new photonic phenomena, such as non-equilibrium quantum Hall physics. In the first part, we discuss the implementation of magnetic-like Hamiltonians in coupled resonator systems and provide a pedagogical connection between the transfer matrix approach and the couple mode theory to evaluate the system Hamiltonian. In the second part, we discuss the investigation of nonequilibrium fractional quantum Hall physics in photonic systems. In particular, we show that driven strongly interacting photons exhibit interesting many-body behaviors which can be probed using the conventional optical measurement techniques.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Hashisaka ◽  
T. Jonckheere ◽  
T. Akiho ◽  
S. Sasaki ◽  
J. Rech ◽  
...  

AbstractElectron correlation in a quantum many-body state appears as peculiar scattering behaviour at its boundary, symbolic of which is Andreev reflection at a metal-superconductor interface. Despite being fundamental in nature, dictated by the charge conservation law, however, the process has had no analogues outside the realm of superconductivity so far. Here, we report the observation of an Andreev-like process originating from a topological quantum many-body effect instead of superconductivity. A narrow junction between fractional and integer quantum Hall states shows a two-terminal conductance exceeding that of the constituent fractional state. This remarkable behaviour, while theoretically predicted more than two decades ago but not detected to date, can be interpreted as Andreev reflection of fractionally charged quasiparticles. The observed fractional quantum Hall Andreev reflection provides a fundamental picture that captures microscopic charge dynamics at the boundaries of topological quantum many-body states.


1994 ◽  
Vol 09 (07) ◽  
pp. 1181-1195 ◽  
Author(s):  
YUN SOO MYUNG

By performing the Gupta–Bleuler quantization of a chiral boson, we obtain the chiral constraints, which correspond to the lowest Landau level conditions. From these, the chiral vacuum is defined as the vacuum of admixtures of many-harmonic oscillators. We construct the wave function for edge states of a droplet of incompressible quantum Hall fluid, by solving Schrödinger's equation on the basis of the chiral vacuum. This bosonic function can describe the collective edge modes, which are fundamentally a many-body effect of fermions at the lowest Landau level. In detail, the neutral edge state of FQHE is described by the α = 1 chiral boson theory. The charged edge states are described by the α ≠ 1 chiral boson theory.


1992 ◽  
Vol 46 (8) ◽  
pp. 4681-4692 ◽  
Author(s):  
Jari M. Kinaret ◽  
Yigal Meir ◽  
Ned S. Wingreen ◽  
Patrick A. Lee ◽  
Xiao-Gang Wen

Sign in / Sign up

Export Citation Format

Share Document