scholarly journals Water Use Characteristics of the Common Tree Species in Rock-dominated and Thin-soil Environments in Subtropical Monsoon Climate Region

Author(s):  
Jianbo Jia ◽  
Wende Yan ◽  
Jia Lu ◽  
Wenping Deng

Abstract Variations in precipitation pattern under climate changes influence water availability that have important implications for plants water use and vegetation sustainability. However, the water use characteristic of the main tree species under different temporal-spatial of water availability remain poorly understood, especially in high temporal-spatial heterogeneity area, such as subtropical monsoon climate region of China. We investigated water use characteristics of the most widely and common natural trees, Mallotus philippensis and Celtis biondii , in edaphic and rocky habitats. We measured the δD and δ 18 O values of xylem and soil water and water potential of plant leaves during the wet season in 2020. The results showed that the two species mainly absorbed soil water from shallow layers and switched for deeper layers during the late of the wet season in both habitats. But the plant water sources were different in edaphic and rocky habitats when the antecedent precipitation was much high, deep layers soil water in the former and still shallow layers in the latter. The two species had no significant differences in water uptake depth, but notably distinction in the diurnal water potential ranges. M. philippensis maintained less negative predawn and midday water potential, whereas C. biondii showed higher diurnal water potential ranges. Besides, the water potential of C. biondii were negatively associated with antecedent precipitation amount. These results indicate that there is significant eco-physiological niche segregation but no ecohydrological segregation co-existing species in communities. Besides, antecedent precipitation amount and habitat differences were the main factors influencing the plant water uptake depth. While the relationship between leaf physiological traits and water availability was affected by the species types, rather than the habitats. Furthermore, during the long drought in growing season, there are probable divergent responses of M. philippensis and C. biondii , such as growth restriction and hydraulic failure. But when the precipitation is heavy and long, these natural species could increase the ecohydrological linkages between ecosystem and the deep-layer system in edaphic habitat.

1991 ◽  
Vol 71 (3) ◽  
pp. 689-694 ◽  
Author(s):  
Safaa H. Al-Hamdani ◽  
Jennifer M. Murphy ◽  
Glenn W. Todd

Stomatal conductance and CO2 assimilation were evaluated at three different levels of soil water availability as tools for estimating relative drought resistance in sorghum (Sorghum bicolor (L.) Moench) at vegetative stage (preanthesis). Four genotypes differing in drought resistance in the field (A Texas line TX 622; Oklahoma lines, BOK 11 and BOK 111; and IN-15, a line from the Sudan of Africa) were investigated. Plants were grown in a growth chamber at 27 °C, (day/night) day length of 14 h and photosynthetic photon flux density of 350 μmol m−2 S−1. Three weeks after germination, plants were divided into control, 50% and 25% soil water saturation groups. At the end of the second week of treatment, simultaneous measurements were made of stomatal conductance, CO2 assimilation, leaf water potential and transpiration, on the youngest most mature leaf. After gas exchange measurements were taken, leaf water potential was measured. In a separate experiment, survival rate under water stress conditions was also determined on plants grown under the same conditions as above. Four weeks after germination, the plants were subjected to two cycles of drought and the survival rate and growth of each genotype determined. Survival rate and growth throughout dought cycles I and II was, in the decreasing order of, IN-15, BOK 111, TX 622 and BOK 11. Water potential, stomatal conductance and CO2 assimilation of each genotype declined with decreased soil water availability; the smallest decrease was observed in IN-15 and the largest decreases in BOK 111, followed by TX 622 and BOK 11. Water use efficiency of each genotype was increased, in the same order as above, with decreased soil water availability. This correlates with the ranking obtained in the artificial drought test. In conclusion, stomatal conductance and CO2 assimilation appear to be useful tools for screening sorghum genotypes at vegetative stage (preanthesis) of growth for drought resistance. Key words: Water potential, water use efficiency (WUE), Sorghum bicolor (L.) Moench


OENO One ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 269 ◽  
Author(s):  
Edoardo Antonio Costantino Costantini ◽  
Alessandro Agnelli ◽  
Pierluigi Bucelli ◽  
Aldo Ciambotti ◽  
Valentina Dell’Oro ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To evaluate the relationship between carbon isotope ratio (δ<sup>13</sup>C) and wine grape viticultural and oenological performance in organic farming.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The study was carried out for four years in the Chianti Classico wine production district (Central Italy), on five non irrigated vineyards conducted in organic farming. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and must sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ<sup>13</sup>C, stem water potential, and soil water availability were also monitored. Finally, soil nitrogen as well as yeast available nitrogen in the must were measured. δ<sup>13</sup>C was directly related to stem water potential and soil water deficit, and indicated a range of water stress conditions from none and moderate to strong. However, its relationship with viticultural and oenological results was contrary to expectation, that is, performance linearly increased along with soil moisture. On the other hand, the worst performance was obtained where both water and nitrogen were more limiting.</p><p style="text-align: justify;"><strong>Conclusions</strong>: The unexpected relationship between δ<sup>13</sup>C and Sangiovese performance was caused by low nitrogen availability. The studied sites all had low-fertility soils with poor or very poor nitrogen content. Therefore, in the plots where soil humidity was relatively higher, nitrogen plant uptake was favoured, and Sangiovese performance improved. Macronutrient being the main limiting factor, the performance was not lower in the plots where soil water availability was relatively larger. Therefore, the best viticultural result was obtained with no water stress conditions, at low rather than at intermediate δ<sup>13</sup>C values.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Water nutrition is crucial for wine grape performance. δ<sup>13</sup>C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ<sup>13</sup>C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ<sup>13</sup>C to predict vine performance.</p>


2014 ◽  
Vol 1 (1) ◽  
pp. 1013-1072
Author(s):  
D. R. Smart ◽  
S. Cosby Hess ◽  
R. Plant ◽  
O. Feihn ◽  
H. Heymann ◽  
...  

Abstract. The geoscience component of terroir in wine grape production continues to be criticized for its quasi-mystical nature, and lack of testable hypotheses. Nonetheless, recent relational investigations are emerging and most involve water availability as captured by available water capacity (AWC, texture) or plant available water (PAW) in the root zone of soil as being a key factor. The second finding emerging may be that the degree of microscale variability in PAW and other soil factors at the vineyard scale renders larger regional characterizations questionable. Cimatic variables like temperature are well mixed, and its influence on wine characteristic is fairly well established. The influence of mesogeology on mesoclimate factors has also been characterized to some extent. To test the hypothesis that vine water status mirrors soil water availability, and controls fruit sensory and chemical properties at the vineyard scale we examined such variables in a iconic, selectively harvested premium winegrape vineyard in the Napa Valley of California during 2007 and 2008 growing seasons. Geo-referenced data vines remained as individual study units throughout data gathering and analysis. Cartographic exercises using geographic information systems (GIS) were used to vizualize geospatial variation in soil and vine properties. Highly significant correlations (P < 0.01) emerged for pre-dawn leaf water potential (ΨPD), mid-day leaf water potential (ΨL) and PAW, with berry size, berry weight, pruning weights (canopy size) and soluble solids content (°Brix). Areas yielding grapes with perceived higher quality had vines with (1) lower leaf water potential (LWP) both pre-dawn and mid-day, (2) smaller berry diameter and weight, (3) lower pruning weights, and (4) higher °Brix. A trained sensory panel found grapes from the more water-stressed vines had significantly sweeter and softer pulp, absence of vegetal character, and browner and crunchier seeds. Metabolomic analysis of the grape skins showed significant differences in accumulation of amino acids and organic acids. Data vines were categorized as non-stressed (ΨPD ≥ −7.9 bars and ΨL ≥ −14.9 bars) and stressed (ΨPD ≤ −8.0 bars and ΨL ≤ −15.0 bars) and subjected to analysis of variance. Significant separation emerged for vines categorized as non-stressed versus stressed at véraison, which correlated to the areas described as producing higher and lower quality fruit. This report does not advocate the use of stress levels herein reported. The vineyard was planted to a vigorous, deep rooted rootstock (V. rupestris cv. St. George), and from years of management is known to be able to withstand stress levels of the magnitude we observed. Nonetheless, the results may suggest there is not a linear relationship between physiological water stress and grape sensory characteristics, but rather the presence of an inflection point controlling grape composition as well as physiological development.


2019 ◽  
Vol 16 (13) ◽  
pp. 2557-2572 ◽  
Author(s):  
Sven Boese ◽  
Martin Jung ◽  
Nuno Carvalhais ◽  
Adriaan J. Teuling ◽  
Markus Reichstein

Abstract. Water-use efficiency (WUE), defined as the ratio of carbon assimilation over evapotranspiration (ET), is a key metric to assess ecosystem functioning in response to environmental conditions. It remains unclear which factors control this ratio during periods of extended water limitation. Here, we used dry-down events occurring at eddy-covariance flux tower sites in the FLUXNET database as natural experiments to assess if and how decreasing soil-water availability modifies WUE at ecosystem scale. WUE models were evaluated by their performance to predict ET from both the gross primary productivity (GPP), which characterizes carbon assimilation at ecosystem scale, and environmental variables. We first compared two water-use efficiency models: the first was based on the concept of a constant underlying water-use efficiency, and the second augmented the first with a previously detected direct influence of radiation on transpiration. Both models predicting ET strictly from atmospheric covariates failed to reproduce observed ET dynamics for these periods, as they did not explicitly account for the effect of soil-water limitation. We demonstrate that an ET-attenuating soil-water-availability factor in junction with the additional radiation term was necessary to accurately predict ET flux magnitudes and dry-down lengths of these water-limited periods. In an analysis of the attenuation of ET for the 31 included FLUXNET sites, up to 50 % of the observed decline in ET was due to the soil-water-availability effect we identified in this study. We conclude by noting that the rates of ET decline differ significantly between sites with different vegetation and climate types and discuss the dependency of this rate on the variability of seasonal dryness.


2005 ◽  
Vol 85 (4) ◽  
pp. 877-888 ◽  
Author(s):  
Paul G. Jefferson ◽  
Herb W. Cutforth

Crested wheatgrass (Agropyron cristatum L. Gaertn.) and alfalfa (Medicago sativa L.) are introduced forage species used for hay and grazing by cattle across western Canada. These species are well adapted to the semiarid region but their long-term responses to water stress have not been previously compared. Two alfalfa cultivars with contrasting root morphology (tap-rooted vs. creeping-rooted) and two crested wheatgrass (CWG) cultivars with different ploidy level (diploid vs. tetraploid) were compared with continuously cropped spring wheat (Triticum aestivum L.) for 6 yr at a semiarid location in western Canada. Soil water depletion, forage yield, water use efficiency, leaf water potential, osmotic potential and turgor were compared. There were no consistent differences between cultivars within alfalfa or CWG for variables measured. However, these two species exhibit different water stress response strategies. Leaf water potential of CWG was lower during midday stress period than that of alfalfa or wheat. Alfalfa apparently had greater capacity to osmotically adjust to avoid midday water stress and maintain higher turgor. Soil water use patterns changed as the stands aged. In the initial years of the trial, forage crops used soil water from upper layers of the profile. In later years, soil water was depleted down to 3 m by alfalfa and to 2 m by crested wheatgrass. Alfalfa was able to deplete soil water to lower concentrations than crested wheatgrass or wheat. Soil water depletion by wheat during the non-active growth season (after harvest to fall freeze-up) was much less than for CWG or alfalfa as expected for annual vs. perennial crops. As a result, more soil water was available to wheat during its active growth period. In the last 3 yr, the three species depleted all available soil water. Forage yield responses also changed over time. In the initial 3 yr, crested wheatgrass yielded as much as or more than alfalfa. For the last 3 yr of the experiment, alfalfa yielded more forage than crested wheatgrass. Forage crops deplete much more soil water during periods of aboveground growth dormancy than wheat. Water use efficiency of crested wheatgrass declined with stand age compared with fertilized continuous spring wheat. Alfalfa exhibited deep soil water extraction and apparent osmotic adjustment in response to water stress while CWG exhibited tolerance of low water potential during stress. Key words: forage yield, soil water, water potential, water use, water use efficiency, drought


Sign in / Sign up

Export Citation Format

Share Document