scholarly journals HIV-1 persistence in lymph node T follicular helper cells (TFH) is mitigated by functional virus-specific T cell responses during hyperacute-treated HIV-1 infection

Author(s):  
Omolara Baiyegunhi ◽  
Jaclyn Mann ◽  
Trevor Khaba ◽  
Thandeka Nkosi ◽  
Anele Mbatha ◽  
...  

Abstract HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV infected cells and immune responses in native lymph node (LN) tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in LN biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated (Tx) in Fiebig stages III-V and 17 late Tx individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, HIV RNA and/or protein was detected in 12 of 14 Fiebig I/II Tx persons who were on suppressive therapy for 1 to 55 months, while all late Tx persons had persistent antigens. CXCR3+T follicular helper T cells harbored the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses associated with lower HIV antigen burden in LNs, suggesting that these responses may contribute to HIV suppression in LNs during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.

2008 ◽  
Vol 82 (16) ◽  
pp. 8161-8171 ◽  
Author(s):  
Kara S. Cox ◽  
James H. Clair ◽  
Michael T. Prokop ◽  
Kara J. Sykes ◽  
Sheri A. Dubey ◽  
...  

ABSTRACT Results from Merck's phase II adenovirus type 5 (Ad5) gag/pol/nef test-of-concept trial showed that the vaccine lacked efficacy against human immunodeficiency virus (HIV) infection in a high-risk population. Among the many questions to be explored following this outcome are whether (i) the Ad5 vaccine induced the quality of T-cell responses necessary for efficacy and (ii) the lack of efficacy in the Ad5 vaccine can be generalized to other vector approaches intended to induce HIV type 1 (HIV-1)-specific T-cell responses. Here we present a comprehensive evaluation of the T-cell response profiles from cohorts of clinical trial subjects who received the HIV CAM-1 gag insert delivered by either a regimen with DNA priming followed by Ad5 boosting (n = 50) or a homologous Ad5/Ad5 prime-boost regimen (n = 70). The samples were tested using a statistically qualified nine-color intracellular cytokine staining assay measuring interleukin-2 (IL-2), tumor necrosis factor alpha, macrophage inflammatory protein 1β, and gamma interferon production and expression of CD107a. Both vaccine regimens induced CD4+ and CD8+ HIV gag-specific T-cell responses which variably expressed several intracellular markers. Several trends were observed in which the frequencies of HIV-1-specific CD4+ T cells and IL-2 production from antigen-specific CD8+ T cells in the DNA/Ad5 cohort were more pronounced than in the Ad5/Ad5 cohort. Implications of these results for future vaccine development will be discussed.


2015 ◽  
Vol 89 (7) ◽  
pp. 3542-3556 ◽  
Author(s):  
Timothée Bruel ◽  
Chiraz Hamimi ◽  
Nathalie Dereuddre-Bosquet ◽  
Antonio Cosma ◽  
So Youn Shin ◽  
...  

ABSTRACTThe spontaneous control of human and simian immunodeficiency viruses (HIV/SIV) is typically associated with specific major histocompatibility complex (MHC) class I alleles and efficient CD8+T-cell responses, but many controllers maintain viral control despite a nonprotective MHC background and weak CD8+T-cell responses. Therefore, the contribution of this response to maintaining long-term viral control remains unclear. To address this question, we transiently depleted CD8+T cells from five SIV-infected cynomolgus macaques with long-term viral control and weak CD8+T-cell responses. Among them, only one carried the protective MHC allele H6. After depletion, four of five controllers experienced a transient rebound of viremia. The return to undetectable viremia was accompanied by only modest expansion of SIV-specific CD8+T cells that lacked efficient SIV suppression capacityex vivo. In contrast, the depletion was associated with homeostatic activation/expansion of CD4+T cells that correlated with viral rebound. In one macaque, viremia remained undetectable despite efficient CD8+cell depletion and inducible SIV replication from its CD4+T cellsin vitro. Altogether, our results suggest that CD8+T cells are not unique contributors to the long-term maintenance of low viremia in this SIV controller model and that other mechanisms, such as weak viral reservoirs or control of activation, may be important players in control.IMPORTANCESpontaneous control of HIV-1 to undetectable levels is associated with efficient anti-HIV CD8+T-cell responses. However, in some cases, this response fades over time, although viral control is maintained, and many HIV controllers (weak responders) have very low frequencies of HIV-specific CD8+T cells. In these cases, the importance of CD8 T cells in the maintenance of HIV-1 control is questionable. We developed a nonhuman primate model of durable SIV control with an immune profile resembling that of weak responders. Transient depletion of CD8+cells induced a rise in the viral load. However, viremia was correlated with CD4+T-cell activation subsequent to CD8+cell depletion. Regain of viral control to predepletion levels was not associated with restoration of the anti-SIV capacities of CD8+T cells. Our results suggest that CD8+T cells may not be involved in maintenance of viral control in weak responders and highlight the fact that additional mechanisms should not be underestimated.


2015 ◽  
Vol 89 (18) ◽  
pp. 9189-9199 ◽  
Author(s):  
Cristina Andrés ◽  
Montserrat Plana ◽  
Alberto C. Guardo ◽  
Carmen Alvarez-Fernández ◽  
Nuria Climent ◽  
...  

ABSTRACTHIV-1-specific immune responses induced by a dendritic cell (DC)-based therapeutic vaccine might have some effect on the viral reservoir. Patients on combination antiretroviral therapy (cART) were randomized to receive DCs pulsed with autologous HIV-1 (n= 24) (DC-HIV-1) or nonpulsed DCs (n= 12) (DC-control). We measured the levels of total and integrated HIV-1 DNA in CD4 T cells isolated from these patients at 6 time points: before any cART; before the first cART interruption, which was at 56 weeks before the first immunization to isolate virus for pulsing DCs; before and after vaccinations (VAC1 and VAC2); and at weeks 12 and 48 after the second cART interruption. The vaccinations did not influence HIV-1 DNA levels in vaccinated subjects. After the cART interruption at week 12 postvaccination, while total HIV-1 DNA increased significantly in both arms, integrated HIV-1 DNA did not change in vaccinees (mean of 1.8 log10to 1.9 copies/106CD4 T cells,P= 0.22) and did increase in controls (mean of 1.8 log10to 2.1 copies/106CD4 T cells,P= 0.02) (P= 0.03 for the difference between groups). However, this lack of increase of integrated HIV-1 DNA observed in the DC-HIV-1 group was transient, and at week 48 after cART interruption, no differences were observed between the groups. The HIV-1-specific T cell responses at the VAC2 time point were inversely correlated with the total and integrated HIV-1 DNA levels after cART interruption in vaccinees (r[Pearson's correlation coefficient] = −0.69,P= 0.002, andr= −0.82,P< 0.0001, respectively). No correlations were found in controls. HIV-1-specific T cell immune responses elicited by DC therapeutic vaccines drive changes in HIV-1 DNA after vaccination and cART interruption. (This study has been registered at ClinicalTrials.gov under registration no. NCT00402142.)IMPORTANCEThere is an intense interest in developing strategies to target HIV-1 reservoirs as they create barriers to curing the disease. The development of therapeutic vaccines aimed at enhancing immune-mediated clearance of virus-producing cells is of high priority. Few therapeutic vaccine clinical trials have investigated the role of therapeutic vaccines as a strategy to safely eliminate or control viral reservoirs. We recently reported that a dendritic cell-based therapeutic vaccine was able to significantly decrease the viral set point in vaccinated patients, with a concomitant increase in HIV-1-specific T cell responses. The HIV-1-specific T cell immune responses elicited by this therapeutic dendritic cell vaccine drove changes in the viral reservoir after vaccinations and significantly delayed the replenishment of integrated HIV-1 DNA after cART interruption. These data help in understanding how an immunization could shift the virus-host balance and are instrumental for better design of strategies to reach a functional cure of HIV-1 infection.


2009 ◽  
Vol 83 (15) ◽  
pp. 7649-7658 ◽  
Author(s):  
J. Judy Chang ◽  
Sunee Sirivichayakul ◽  
Anchalee Avihingsanon ◽  
Alex J. V. Thompson ◽  
Peter Revill ◽  
...  

ABSTRACT Hepatits B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.


2012 ◽  
Vol 122 (1) ◽  
pp. 359-367 ◽  
Author(s):  
Nicole Frahm ◽  
Allan C. DeCamp ◽  
David P. Friedrich ◽  
Donald K. Carter ◽  
Olivier D. Defawe ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1261-1261
Author(s):  
Zwi N. Berneman ◽  
Ellen R. Van Gulck ◽  
Leo Heyndrickx ◽  
Peter Ponsaerts ◽  
Viggo F.I. Van Tendeloo ◽  
...  

Abstract Human immunodeficiency virus type 1 (HIV-1) infection is characterized by dysfunction of HIV-1-specific T-lymphocytes. In order to suppress the virus and delay evolution to AIDS, antigen-loaded antigen-presenting cells, including dendritic cells (DC) might be useful to boost and broaden HIV-1-specific T-cell responses. Monocyte-derived DC from 15 untreated (“naive”) and 15 highly active anti-retroviral therapy (HAART)-treated HIV-1-infected patients were electroporated with codon-optimized (“humanized”) mRNA encoding consensus HxB-2 (hHxB-2) Gag protein. These DC were co-cultured for 1 week with autologous peripheral blood leucocytes (PBL). Potential expansion of specific T-cells was measured by comparing ELISPOT responses of PBL before and after co-culture, using a pool of overlapping peptides, spanning the HxB-2 Gag. Expansion of specific PBL after co-culture was noted for T cells producing interferon (IFN)-gamma, interleukin (IL)-2 and perforin (Wilcoxon signed rank test p&lt;0.05, except for IL-2 in naive patients). From all HIV-1-seropositive persons tested, 12 HAART-treated and 12 naive patients match in absolute number of CD4+ T-cells. A comparison of the increase of the response between day 0 and after 1 week of stimulation between those two groups showed that the response was higher in HAART-treated subjects for IFN-gamma and IL-2 but not for perforin in comparison to untreated subjects. Examining purified CD4+ and CD8+ T-cells after co-culture revealed that HxB-2 Gag peptides induced IFN-gamma in both subsets, that IL-2 was only secreted by CD4+ T-cells and that perforin was dominantly secreted by CD8+ T-cells. Remarkably, the perforin response in the treatment-naive persons was negatively correlated with the peripheral blood absolute CD4+ and CD8+ T-cell count (respectively R=0.618, p=0.014; and R=0.529, p=0.043). Furthermore, the nadir absolute CD4+ T-cell count in HAART-treated subjects was positively correlated with the IL-2 response (R=0.521, p=0.046) and negatively correlated with the perforin response (R=0.588, p=0.021). In conclusion, DC from HAART-treated and therapy-naive subjects, electroporated with hHxB-2 gag mRNA have the capacity to induce secondary T-cell responses. In an earlier study (Van Gulck ER et al. Blood2006;107:1818–1827), we already demonstrated ex vivo that CD4+ and CD8+ T-cells from non-treated HIV-1-infected subjects can be directly triggered by DC electroporated with autologous proviral-derived gag mRNA. Taken together, our results open the perspective for a DC immunotherapy for HIV disease.


2004 ◽  
Vol 78 (24) ◽  
pp. 13934-13942 ◽  
Author(s):  
N. N. Zheng ◽  
N. B. Kiviat ◽  
P. S. Sow ◽  
S. E. Hawes ◽  
A. Wilson ◽  
...  

ABSTRACT Human immunodeficiency virus type 2 (HIV-2) infection is typically less virulent than HIV-1 infection, which may permit the host to mount more effective, sustained T-cell immunity. We investigated antiviral gamma interferon-secreting T-cell responses by an ex vivo Elispot assay in 68 HIV-1- and 55 HIV-2-infected Senegalese patients to determine if differences relate to more efficient HIV-2 control. Homologous HIV-specific T cells were detected in similar frequencies (79% versus 76%, P = 0.7) and magnitude (3.12 versus 3.08 log10 spot-forming cells/106 peripheral blood mononuclear cells) in HIV-1 and HIV-2 infection, respectively. Gag-specific responses predominated in both groups (≥64%), and significantly higher Nef-specific responses occurred in HIV-1-infected (54%) than HIV-2-infected patients (22%) (P < 0.001). Heterologous responses were more frequent in HIV-1 than in HIV-2 infection (46% versus 27%, P = 0.04), but the mean magnitude was similar. Total frequencies of HIV-specific responses in both groups did not correlate with plasma viral load and CD4+ T-cell count in multivariate regression analyses. However, the magnitude of HIV-2 Gag-specific responses was significantly associated with lower plasma viremia in HIV-1-infected patients (P = 0.04). CD4+ T-helper responses, primarily recognizing HIV-2 Gag, were detected in 48% of HIV-2-infected compared to only 8% of HIV-1-infected patients. These findings indicate that improved control of HIV-2 infection may relate to the contribution of T-helper cell responses. By contrast, the superior control of HIV-1 replication associated with HIV-2 Gag responses suggests that these may represent cross-reactive, higher-avidity T cells targeting epitopes within Gag regions of functional importance in HIV replication.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ellen Van Gulck ◽  
Nathalie Cools ◽  
Derek Atkinson ◽  
Lotte Bracke ◽  
Katleen Vereecken ◽  
...  

A variety of immune-based therapies has been developed in order to boost or induce protective CD8+T cell responses in order to control HIV replication. Since dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique capability to stimulate naïve T cells into effector T cells, their use for the induction of HIV-specific immune responses has been studied intensively. In the present study we investigated whether modulation of the activation state of DCs electroporated with consensus codon-optimized HxB2gagmRNA enhances their capacity to induce HIVgag-specific T cell responses. To this end, mature DCs were (i) co-electroporated with mRNA encoding interleukin (IL)-12p70 mRNA, or (ii) activated with a cytokine cocktail consisting of R848 and interferon (IFN)-γ. Our results confirm the ability of HxB2gag-expressing DCs to expand functional HIV-specific CD8+T cells. However, although most of the patients had detectablegag-specific CD8+T cell responses, no significant differences in the level of expansion of functional CD8+T cells could be demonstrated when comparing conventional or immune-modulated DCs expressing IL-12p70. This result which goes against expectation may lead to a re-evaluation of the need for IL-12 expression by DCs in order to improve T-cell responses in HIV-1-infected individuals.


2015 ◽  
Vol 89 (21) ◽  
pp. 10802-10820 ◽  
Author(s):  
Mauricio A. Martins ◽  
Damien C. Tully ◽  
Michael A. Cruz ◽  
Karen A. Power ◽  
Marlon G. Veloso de Santana ◽  
...  

ABSTRACTCertain major histocompatibility complex class I (MHC-I) alleles (e.g.,HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed “elite controllers” [ECs]). Likewise,Mamu-B*08expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infectedMamu-B*08+animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control inMamu-B*08+macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8+T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8+T-cell response would facilitate the development of elite control inMamu-B*08+animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinatedMamu-B*08+animals withnefinserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8+T cells. These vaccine-induced effector memory CD8+T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8+T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control inMamu-B*08+macaques.IMPORTANCESince elite control of chronic-phase viremia is a classic example of an effective immune response against HIV/SIV, elucidating the basis of this phenomenon may provide useful insights into how to elicit such responses by vaccination. We have previously established that vaccine-induced CD8+T-cell responses against three immunodominant epitopes can increase the incidence of elite control in SIV-infectedMamu-B*08+rhesus macaques—a model of HLA-B*27-mediated elite control. Here, we investigated whether a monotypic vaccine-induced CD8+T-cell response targeting the conserved “late-escaping” Nef RL10 epitope can increase the incidence of elite control inMamu-B*08+monkeys. Surprisingly, vaccine-induced Nef RL10-specific CD8+T cells selected for variants within days after infection and, ultimately, did not facilitate the development of elite control. Elite control is, therefore, likely to involve CD8+T-cell responses against more than one epitope. Together, these results underscore the complexity and multidimensional nature of virologic control of lentivirus infection.


Sign in / Sign up

Export Citation Format

Share Document