scholarly journals Long Term Resource Conservation Technologies Sustained Yield, Microbial Activities and Soil Physico-chemical Properties in Rice-green Gram Cropping System

Author(s):  
Pradeep Kumar Dash ◽  
Pratap Bhattacharyya ◽  
Mohammad Shahid ◽  
Upendra Kumar ◽  
Soumya Ranjan Padhy ◽  
...  

Abstract PurposeMicrobial communities in rhizospheric soil play a significant role in sustaining the soil quality and also recognized as key ecological indicators to assess the soil health. MethodsWe studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment included conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing (WDS), zero tillage (ZT), green manuring-customized leaf colour chart based-N application (GM-CLCC N) and biochar (BC) treatments. ResultsThe result revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice increased by 23.3, 37.7 and 35.1%, respectively over CC. The Shannon index and McIntosh index were higher by 86.9% and 29.2% in GM as compared to conventional practice and significantly correlated with microbial biomass (C & P) and soil microbial populations whereas, Shannon index was positively correlated with the microbial biomass (C, N & P) and soil enzyme activities. Principal component analysis showed a significant separate cluster among the treatments amended with and without biomass addition. ConclusionsMoreover, dominance of carbon utilizing microbes in biomass amended treatments indicated that these could supply good amount of labile carbon sources on real time basis for microbial activity. Which may protect the stable carbon fraction in soil, hence could support higher build-up of carbon in long run and could offer sustainable yield under rice-green gram soil.

2011 ◽  
Vol 52 (No. 8) ◽  
pp. 345-352 ◽  
Author(s):  
G. Mühlbachová ◽  
P. Tlustoš

The effects of liming by CaO and CaCO<sub>3</sub> on soil microbial characteristics were studied during laboratory incubation of long-term contaminated arable and grassland soils from the vicinity of lead smelter near Př&iacute;bram (Czech Republic). The CaO treatment showed significant negative effects on soil microbial biomass C and its respiratory activity in both studied soils, despite the fact that microbial biomass C in the grassland soil increased sharply during the first day of incubation. The metabolic quotient (qCO<sub>2</sub>) in soils amended by CaO showed greater values than the control from the second day of incubation, indicating a possible stress of soil microbial pool. The vulnerability of organic matter to CaO could be indicated by the availability of K<sub>2</sub>SO<sub>4</sub>-extractable carbon that increased sharply, particularly at the beginning of the experiment. The amendment of soils by CaCO<sub>3 </sub>moderately increased the soil microbial biomass. The respiratory activity and qCO<sub>2</sub> increased sharply during the first day of incubation, however it is not possible to ascribe them only to microbial activities, but also to CaCO<sub>3</sub> decomposition in hydrogen carbonates, water and CO<sub>2</sub>. The pH values increased more sharply under CaO treatment in comparison to CaCO<sub>3</sub> treatment. The improvement of soil pH by CaCO<sub>3</sub> could be therefore more convenient for soil microbial communities.


2007 ◽  
Vol 47 (6) ◽  
pp. 700 ◽  
Author(s):  
M. C. Manna ◽  
A. Swarup ◽  
R. H. Wanjari ◽  
H. N. Ravankar

Yield decline or stagnation under long-term cultivation and its relationship with soil organic matter fractions are rarely considered. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in a long-term experiment at Akola, in a Vertisol in a semiarid tropical environment. For 14 years, the following fertiliser treatments were compared with undisturbed fallow plots: unfertilised (control), 100% recommended rates of N, NP, NPK (N : P : K ratios of 100 : 21.8 : 18.2 and 120 : 26.2 : 50 kg/ha for sorghum and wheat, respectively) and 100% NPK plus farmyard manure (FYM) and continuous cropping with a sorghum (Sorghum bicolor L. Moench) and wheat (Triticum aestivum L.) system during 1988–2001. The significant negative yield trend was observed in unbalanced use of inorganic N application for both crops. However, yields were maintained when NPK and NPK + FYM were applied. Results showed that soil organic C and total N in the unfertilised plot decreased by 21.7 and 18.2%, compared to the initial value, at a depth of 0–15 cm. Depletion of large macroaggregates (>2 mm) accounted for 22–81% of the total mass of aggregates in N, NP and unfertilised control plots compared to fallow plots. Irrespective of treatments, small macroaggregates (0.25–2 mm) dominated aggregate size distribution (56–71%), followed by microaggregates (0.053–0.25 mm, 18–37%). Active fractions, such as microbial biomass C, microbial biomass N, hot water soluble C and N, and acid hydrolysable carbohydrates were greater in NPK and NPK + FYM treatments than in the control. Carbon and N mineralisation were greater in small macroaggregates than microaggregates. Particulate organic matter C (POMC) and N (POMN) were significantly correlated (P < 0.01) with water-stable aggregate C and N (0.25–2 mm size classes), respectively. It was further observed that POMC and POMN were significantly greater in NPK and NPK + FYM plots than N and NP treated plots. Microbial biomass C was positively correlated with acid-hydrolysable carbohydrates (r = 0.79, P < 0.05). Continuous cropping and fertiliser use also influenced humic acid C and fulvic acid C fractions of the soil organic matter. Acid-hydrolysable N proportion in humic acid was greater than fulvic acid and it was greatest in NPK + FYM treatments. Continuous application of 100% NPK + FYM could restore soil organic carbon (SOC) to a new equilibrium level much earlier (t = 1/k, 2.4 years) than N (t = 1/k, 25.7 years), NP (t = 1/k, 8.1 years) and NPK (t = 1/k, 5.02 years). In conclusion, integrated use of NPK with FYM would be vital to obtain sustainable yields without deteriorating soil quality.


1996 ◽  
Vol 26 (10) ◽  
pp. 1799-1804 ◽  
Author(s):  
F. Eivazi ◽  
M.R. Bayan

In low-input or unmanaged ecosystems, the relationship between soil enzyme activity and plant biomass is expected and may be used as an early and sensitive indicator of soil productivity. This study was designed to (1) examine the long-term effects of burning on the activities of arylsulfatase, acid phosphatase, α- and β-glucosidase, and urease; (2) determine the relationship between microbial biomass C and enzyme activities as affected by long-term prescribed burning; and (3) study the seasonal variations in activities of the above-mentioned enzymes. Soil samples (Typic Fragiudalf) were collected from southeastern Missouri where a long-term burning experiment was established in 1949. Treatments consisted of (1) annual burning; (2) periodic burning, every 4 years; and (3) control, unburned. Soil samples (0–15 cm) were collected before and after annual and periodic burning during 1992 and seasonally in 1993. Long-term burning treatments significantly reduced the activities of enzymes studied but did not affect the pH and organic C. The microbial biomass C, total N, available P, and available S content of soil samples from both annual and periodic burning plots were significantly reduced. A significant positive correlation between soil enzyme activities and the microbial biomass was established. The treatment effects were apparent over the background seasonal variability, with reduced enzyme activity for the annual and periodic burning plots as compared with the unburned plots.


Author(s):  
Radhi Al-Rashidi ◽  
Munir Rusan ◽  
Karem Obaid

Abstract Long-term effects of surface application of secondary treated wastewater on plant nutrients dynamics, the cycling of C and N within the system through the determination of microbial biomass, and associated health hazards were studied in different soil locations. Sites that have been irrigated with wastewater for the last 1, 4, 10, and 17 years were identified and used as sampling locations for this study. Two other sites that have not been irrigated with wastewater were sampled as a control. Soil samples were taken from several sites within each location, and at the following depths: 0-20, 20-40, and 40-60 cm. Results obtained indicated that microbial biomass C and N were increased significantly with increasing application period of treated wastewater. Barley plant tissues analysis showed that plant nutrients content was significantly higher in sites which received wastewater for a long period than other sites. No significances in accumulation of lead (Pb) in barley plant tissues were observed with sites received wastewater for different periods. The bacteriological analysis showed that the total bacterial count of surface soil (0-20 cm) was higher in sites irrigated with wastewater for the last 10 and 17 years. The total coliforms ranged from 0.92x102 cfu/g soil to 3.3x102 cfu/g soil, while fecal coliform were less and detected only in top soils at sites irrigated with wastewater for the last 10 and 17 years.


2021 ◽  
Vol 13 (17) ◽  
pp. 9769
Author(s):  
Gábor Csitári ◽  
Zoltán Tóth ◽  
Mónika Kökény

The effect of two types of organic amendment (manure and straw incorporation) and various doses (0–200 kg N*ha−1) of mineral N fertilization on microbial biomass C (MBC), aggregate stability (AS), soil organic C (SOC) and grain yield were investigated in an IOSDV long-term fertilization experiment (Keszthely, Hungary). This study was conducted during years 2015–2016 in a sandy loam Ramann-type brown forest soil (Eutric Cambisol according to WRB). Organic amendments had a significant effect on AS, MBC and SOC, increased their values compared to the unamended control. The organic amendments showed different effects on AS and MBC. AS was increased the most by straw incorporation and MBC by manure application. The magnitude of temporal variability of AS and MBC differed. Presumably, the different effects of organic amendments and the different degrees of temporal variability explain why there was only a weak (0.173) correlation between AS and MBC. AS did not correlate with SOC or grain yield. MBC correlated (0.339) with SOC but not with the grain yield. The N fertilizer dose did not have a significant effect on AS and MBC, but had a significant effect on SOC and grain yield.


Sign in / Sign up

Export Citation Format

Share Document