Effects of long-term prescribed burning on the activity of select soil enzymes in an oak–hickory forest

1996 ◽  
Vol 26 (10) ◽  
pp. 1799-1804 ◽  
Author(s):  
F. Eivazi ◽  
M.R. Bayan

In low-input or unmanaged ecosystems, the relationship between soil enzyme activity and plant biomass is expected and may be used as an early and sensitive indicator of soil productivity. This study was designed to (1) examine the long-term effects of burning on the activities of arylsulfatase, acid phosphatase, α- and β-glucosidase, and urease; (2) determine the relationship between microbial biomass C and enzyme activities as affected by long-term prescribed burning; and (3) study the seasonal variations in activities of the above-mentioned enzymes. Soil samples (Typic Fragiudalf) were collected from southeastern Missouri where a long-term burning experiment was established in 1949. Treatments consisted of (1) annual burning; (2) periodic burning, every 4 years; and (3) control, unburned. Soil samples (0–15 cm) were collected before and after annual and periodic burning during 1992 and seasonally in 1993. Long-term burning treatments significantly reduced the activities of enzymes studied but did not affect the pH and organic C. The microbial biomass C, total N, available P, and available S content of soil samples from both annual and periodic burning plots were significantly reduced. A significant positive correlation between soil enzyme activities and the microbial biomass was established. The treatment effects were apparent over the background seasonal variability, with reduced enzyme activity for the annual and periodic burning plots as compared with the unburned plots.

Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 258
Author(s):  
Chengliang Wang ◽  
Baoku Shi ◽  
Wei Sun ◽  
Qingcheng Guan

The effects of mixed inorganic and organic nitrogen (N) addition on soil enzyme activities and the underlying mechanism remain unclear, especially in complex field conditions. We conducted a mesocosm experiment with two rates of N addition (10 and 20 g N m–2 year–1) and four ratios of N addition (inorganic N:organic N = 10:0, 7:3, 3:7 and 1:9) and measured enzyme activities, soil physicochemical properties, microbial biomass and vegetation indicators. Generally, soil enzyme activities involved in carbon (C), N and phosphorus cycling increased with the increase of N addition rate. Compared to the single inorganic N addition treatment, enzyme activities were highest under mixed N addition treatments, especially medium organic N addition. The variations in soil enzyme activities across different treatments were tightly linked to the soil microbial biomass C, dissolved organic C and soil pH. These findings provide a good understanding of the response trends of soil hydrolytic enzyme activities in a meadow steppe to changes in N deposition rate and form.


2012 ◽  
Vol 518-523 ◽  
pp. 39-43
Author(s):  
Xiao Guang Zhao ◽  
Yuan Yuan Guan ◽  
Wen Yu Huang

In this paper, simulated experiments were performed in pots by using soil materials in different conditions of film remnant. Based on the research on soil microorganism quantity trends of soil enzyme activities were analyzed systematically: soil without film remnant, soil with film remnant for 5, 10, 15 and 20 years. By analyzing crop progress, the relationship with soil material was studied, in order to provide scientific basis for the variation laws between different conditions of film remnant and the activity of soil enzyme.


2021 ◽  
Vol 13 (17) ◽  
pp. 9769
Author(s):  
Gábor Csitári ◽  
Zoltán Tóth ◽  
Mónika Kökény

The effect of two types of organic amendment (manure and straw incorporation) and various doses (0–200 kg N*ha−1) of mineral N fertilization on microbial biomass C (MBC), aggregate stability (AS), soil organic C (SOC) and grain yield were investigated in an IOSDV long-term fertilization experiment (Keszthely, Hungary). This study was conducted during years 2015–2016 in a sandy loam Ramann-type brown forest soil (Eutric Cambisol according to WRB). Organic amendments had a significant effect on AS, MBC and SOC, increased their values compared to the unamended control. The organic amendments showed different effects on AS and MBC. AS was increased the most by straw incorporation and MBC by manure application. The magnitude of temporal variability of AS and MBC differed. Presumably, the different effects of organic amendments and the different degrees of temporal variability explain why there was only a weak (0.173) correlation between AS and MBC. AS did not correlate with SOC or grain yield. MBC correlated (0.339) with SOC but not with the grain yield. The N fertilizer dose did not have a significant effect on AS and MBC, but had a significant effect on SOC and grain yield.


Soil Research ◽  
2014 ◽  
Vol 52 (7) ◽  
pp. 706 ◽  
Author(s):  
Lei Ouyang ◽  
Qian Tang ◽  
Liuqian Yu ◽  
Renduo Zhang

This study aimed to investigate the effects of different biochars on soil enzyme activities associated with soil carbon (C) mineralisation. Biochars were produced from two types of feedstock (fresh dairy manure and pine tree woodchip) at temperatures of 300°C, 500°C, and 700°C. Each biochar was mixed at a ratio of 5% (w/w) with a forest loamy soil and the mixture was incubated at 25°C for 180 days. Soil mineralisation rates, soil dissolved organic C, soil microbial biomass C, and five soil enzyme activities were measured during different incubation periods. Results showed that biochar addition increased soil enzyme activities at the early stage (mainly within the first 80 days) because biochar brought available nutrients to the soil and increased soil dissolved organic C and microbial activity. Soil enzyme activities were enhanced more by the dairy manure biochars than by the woodchip biochars (P < 0.05). The enhancement effect on enzyme activities (except catalase activity) was greater in the treatments with biochars produced at lower pyrolysis temperature (300°C). Linear relationships between some soil enzymes and C-mineralisation rates might indicate that the increased enzyme activities stimulated soil C mineralisation at the early stage. However, the biochar additions could result in great C sequestration in the long term, especially for the woodchip biochars pyrolysed at higher temperatures.


2008 ◽  
Vol 3 (No. 2) ◽  
pp. 41-51 ◽  
Author(s):  
T. Šimon

Parameters evaluating soil organic matter quantity (organic C and N content) and quality (hot water extractable C content, aliphatic compounds, microbial biomass C content, basal respiration activity) were determined in soils differently fertilized (NPK &ndash; mineral fertilization 64.6 kg N/ha/year, FYM &ndash; farmyard manure 38.6 kg N/ha/year, FYM + NPK &ndash; 103.3 kg N/ha/year) in long-term field experiment established in 1955 in Prague. Variant without any fertilization was used as a control. Nine years crop rotation (45% cereals, 33% root crops, 22% fodder crops) is practiced in this long-term experiment. Soil samples were taken from the arable layer (0&ndash;20 cm) in spring over the period of 1994&ndash;2004. Continual application of FYM and FYM + NPK increased the organic carbon content, hot water extractable C (HWC) content, aliphatic compounds content and microbial biomass C content significantly compared to control variant. Mineral fertilization (NPK) increased only organic C content significantly compared to control variant; HWC content, aliphatic compounds content and microbial biomass C content were increased not significantly. Basal respiration activity did not differ significantly between the variants but the influence of plants cropped in individual years on the basal respiration was observed. The total N content was increased significantly only in FYM + NPK variant as compared to control variant. Presence of lucerne in crop rotation contributed positively to the total nitrogen content in soil of all variants due to the symbiotic N<sub>2</sub> fixation. C:N ratio varied from 9.96 to 10.46. Significant positive relationships (r = 0.30 to 0.68; P &lt; 0.05) among the all parameters were determined with exception of basal respiration activity. The most of measured characteristics tended to be constant or slightly increase in the period of observation that shows evidence of stability of this soil management system.


1993 ◽  
Vol 23 (7) ◽  
pp. 1286-1290 ◽  
Author(s):  
Hannu Fritze ◽  
Taina Pennanen ◽  
Janna Pietikäinen

Development of humus layer soil microbial biomass C (Cmic) and N (Nmic), fungal biomass (as soil ergosterol content), microbial respiration activity, and the soil organic C (Corg) and N (Ntot) were determined in coniferous forest soils that had received a single prescribed fire treatment at different times over a period of 45 years. The ratio of soil respiration rate to microbial biomass C (qCO2) and the Cmic/Corg and Nmic/Ntot percentages were derived from the measurements taken. All the measured biomass indicators reacted identically to show recovery from prescribed burning within 12 years. A raised metabolic quotient (qCO2) was detected in soils over the first 2 years following the fire treatment, but after the third year it had decreased to a stable level. These observations suggest that during the first few years after fire the soil microflora can be characterized on the basis of simple substrate–decomposer relationships. The first 12 years were characterized by increasing Cmic/Corg and Nmic/Ntot percentages, which then stabilized at mean values of 1.3 and 5.5%, respectively. The observed rise in the Cmic within a large pool of Corg suggested increasing availability of energy-rich C sources. These C sources are probably derived from the organic C input resulting from postfire plant succession.


1993 ◽  
Vol 73 (3) ◽  
pp. 341-347 ◽  
Author(s):  
V. V. S. R. Gupta ◽  
R. E. Farrell ◽  
J. J. Germida

In this study we investigated the occurrence of arylsulfatase activity in Saskatchewan soils and assessed the relationships between enzyme activity and soil properties. Thirty-nine soils representative of the five soil zones in Saskatchewan, and exhibiting a wide range of physical, chemical, and biological characteristics were studied. Arylsulfatase was detected in all the soils. Enzyme activity ranged from 14 to 770 μg ρ-nitrophenol released g−1 soil h−1. Arylsulfatase activity was highly correlated with levels of organic C (r = 0.73***), total S (r = 0.74***), HI-S (r = 0.60***), and microbial biomass C (MB-C; r = 0.56***). There was a relatively weak positive correlation (r = 0.48**) between arylsulfatase activity and the amount of SO4-S in the soils, indicating that end-product inhibition of the enzyme was not a factor at the low levels of SO4 commonly found in Saskatchewan soils. Key words: Sulfur, HI-reducible S, microbial biomass, organic C


Sign in / Sign up

Export Citation Format

Share Document