Regulation of Transient Receptor Potential Canonical 4 Activity by Phospholipase C-δ1

Author(s):  
Juyeon Ko ◽  
Jongyun Myeong ◽  
Misun Kwak ◽  
Insuk So

Abstract Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β and TRPC5 channels are regulated by phospholipase C (PLC) signaling, and are especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2). The PLCδ subtype is the most Ca2+-sensitive form among the isozymes which cleaves phospholipids to respond to the calcium rise. In this study, we investigated the regulation mechanism of TRPC channel by Ca2+, PLCδ1 and PIP2 signaling cascades. The interaction between TRPC4β and PLCδ1 was identified through the Fӧster resonance energy transfer (FRET) and co-immunoprecipitation (Co-IP). With the electrophysiological experiments, we found that TRPC4β-bound PLCδ1 reduces the overall whole-cell current of channel. The Ca2+-via opened channel promotes the activation of PLCδ1, which subsequently decreases PIP2 level. By comparison TRPC4β activity with or without PLCδ1 using differently [Ca2+]i buffered solution, we demonstrated that PLCδ1 functions in normal condition with physiological calcium range. The negative regulation effect of PLCδ1 on TRPC4β helps to elucidate the roles of each PIP2 binding residues whether they are concerned in channel maintenance or inhibition of channel activity.

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 73
Author(s):  
Jinsung Kim ◽  
Juyeon Ko ◽  
Chansik Hong ◽  
Insuk So

The study of the structure–function relationship of ion channels has been one of the most challenging goals in contemporary physiology. Revelation of the three-dimensional (3D) structure of ion channels has facilitated our understanding of many of the submolecular mechanisms inside ion channels, such as selective permeability, voltage dependency, agonist binding, and inter-subunit multimerization. Identifying the structure–function relationship of the ion channels is clinically important as well since only such knowledge can imbue potential therapeutics with practical possibilities. In a sense, recent advances in the understanding of the structure–relationship of transient receptor potential canonical (TRPC) channels look promising since human TRPC channels are calcium-permeable, non-selective cation channels expressed in many tissues such as the gastrointestinal (GI) tract, kidney, heart, vasculature, and brain. TRPC channels are known to regulate GI contractility and motility, pulmonary hypertension, right ventricular hypertrophy, podocyte injury, seizure, fear, anxiety-like behavior, and many others. In this article, we tried to elaborate recent findings of Cryo-EM (cryogenic-electron microscopy) based structural information of TRPC 4 and 5 channels and domain-specific functions of the channel, such as G-protein mediated activation mechanism, extracellular modification of the channel, homo/hetero-tetramerization, and pharmacological gating mechanisms.


2020 ◽  
Vol 21 (5) ◽  
pp. 1739
Author(s):  
Muhammad Yasir Asghar ◽  
Kid Törnquist

Calcium (Ca2+) is perhaps the most versatile signaling molecule in cells. Ca2+ regulates a large number of key events in cells, ranging from gene transcription, motility, and contraction, to energy production and channel gating. To accomplish all these different functions, a multitude of channels, pumps, and transporters are necessary. A group of channels participating in these processes is the transient receptor potential (TRP) family of cation channels. These channels are divided into 29 subfamilies, and are differentially expressed in man, rodents, worms, and flies. One of these subfamilies is the transient receptor potential canonical (TRPC) family of channels. This ion channel family comprises of seven isoforms, labeled TRPC1–7. In man, six functional forms are expressed (TRPC1, TRPC3–7), whereas TRPC2 is a pseudogene; thus, not functionally expressed. In this review, we will describe the importance of the TRPC channels and their interacting molecular partners in the etiology of cancer, particularly in regard to regulating migration and invasion.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1983
Author(s):  
Xingjuan Chen ◽  
Gagandeep Sooch ◽  
Isaac S. Demaree ◽  
Fletcher A. White ◽  
Alexander G. Obukhov

Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1–7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs’ functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 496
Author(s):  
Priya R. Kirtley ◽  
Gagandeep S. Sooch ◽  
Fletcher A. White ◽  
Alexander G. Obukhov

This 2020 Special Issue “TRPC channels” of Cells was dedicated to commemorating the 25th anniversary of discovery of the Transient Receptor Potential Canonical (TRPC) channel subfamily [...]


Sign in / Sign up

Export Citation Format

Share Document