trpc channel
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
pp. 101546
Author(s):  
Alireza Baradaran-Heravi ◽  
Claudia C. Bauer ◽  
Isabelle B. Pickles ◽  
Sara Hosseini-Farahabadi ◽  
Aruna D. Balgi ◽  
...  

Author(s):  
Robin S. Bon ◽  
David J. Wright ◽  
David J. Beech ◽  
Piruthivi Sukumar

Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 15 ◽  
Author(s):  
Paula P. Perissinotti ◽  
Elizabeth Martínez-Hernández ◽  
Erika S. Piedras-Rentería

Leptin regulates hypothalamic POMC+ (pro-opiomelanocortin) neurons by inducing TRPC (Transient Receptor Potential Cation) channel-mediate membrane depolarization. The role of TRPC channels in POMC neuron excitability is clearly established; however, it remains unknown whether their activity alone is sufficient to trigger excitability. Here we show that the right-shift voltage induced by the leptin-induced TRPC channel-mediated depolarization of the resting membrane potential brings T-type channels into the active window current range, resulting in an increase of the steady state T-type calcium current from 40 to 70% resulting in increased intrinsic excitability of POMC neurons. We assessed the role and timing of T-type channels on excitability and leptin-induced depolarization in vitro in cultured mouse POMC neurons. The involvement of TRPC channels in the leptin-induced excitability of POMC neurons was corroborated by using the TRPC channel inhibitor 2APB, which precluded the effect of leptin. We demonstrate T-type currents are indispensable for both processes, as treatment with NNC-55-0396 prevented the membrane depolarization and rheobase changes induced by leptin. Furthermore, co-immunoprecipitation experiments suggest that TRPC1/5 channels and CaV3.1 and CaV3.2 channels co-exist in complex. The functional relevance of this complex was corroborated using intracellular Ca2+ chelators; intracellular BAPTA (but not EGTA) application was sufficient to preclude POMC neuron excitability. However, leptin-induced depolarization still occurred in the presence of either BAPTA or EGTA suggesting that the calcium entry necessary to self-activate the TRPC1/5 complex is not blocked by the presence of BAPTA in hypothalamic neurons. Our study establishes T-type channels as integral part of the signaling cascade induced by leptin, modulating POMC neuron excitability. Leptin activation of TRPC channels existing in a macromolecular complex with T-type channels recruits the latter by locally induced membrane depolarization, further depolarizing POMC neurons, triggering action potentials and excitability.


Nitric Oxide ◽  
2021 ◽  
Author(s):  
Tenderano T. Muzorewa ◽  
Donald G. Buerk ◽  
Dov Jaron ◽  
Kenneth A. Barbee
Keyword(s):  

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 496
Author(s):  
Priya R. Kirtley ◽  
Gagandeep S. Sooch ◽  
Fletcher A. White ◽  
Alexander G. Obukhov

This 2020 Special Issue “TRPC channels” of Cells was dedicated to commemorating the 25th anniversary of discovery of the Transient Receptor Potential Canonical (TRPC) channel subfamily [...]


Author(s):  
Natthaphat Siri-Angkul ◽  
Zhen Song ◽  
Nadezhda Fefelova ◽  
Judith K. Gwathmey ◽  
Siriporn C. Chattipakorn ◽  
...  

Background - Arrhythmias and heart failure are common cardiac complications leading to substantial morbidity and mortality in patients with hemochromatosis, yet mechanistic insights remain incomplete. We investigated the effects of iron (Fe) on electrophysiological properties and intracellular Ca 2+ (Ca 2+ i) handling in mouse left ventricular cardiomyocytes. Methods - Cardiomyocytes were isolated from the left ventricle of mouse hearts and were superfused with Fe 3+ /8-hydroxyquinoline complex (5-100 μM). Membrane potential and ionic currents including transient receptor potential canonical (TRPC) was recorded using the patch-clamp technique. Ca 2+ i was evaluated by using Fluo-4. Cell contraction was measured with a video-based edge detection system. The role of TRPCs in the genesis of arrhythmias was also investigated by using a mathematical model of a mouse ventricular myocyte with the incorporation of the TRPC component. Results - We observed prolongation of the action potential (AP) duration and induction of early and delayed afterdepolarizations (EADs and DADs) in myocytes superfused with 15 µM Fe 3+ /8-hydroxyquinoline (8-HQ) complex. Iron treatment decreased the peak amplitude of the L-type Ca 2+ current (I Ca,L ) and total K + current (I K ), altered Ca 2+ i dynamics, and decreased cell contractility. During the final phase of Fe treatment, sustained Ca 2+ i waves (CaWs) and repolarization failure occurred and ventricular cells became unexcitable. Gadolinium abolished CaWs and restored the resting membrane potential (RMP) to the normal range. The involvement of TRPC activation was confirmed by I TRPC recordings in the absence or presence of functional TRPC channel antibodies. Computer modeling captured the same AP and Ca 2+ i dynamics and provided additional mechanistic insights. Conclusions - We conclude that iron overload induces cardiac dysfunction that is associated with TRPC channel activation and alterations in membrane potential and Ca 2+ i dynamics.


2019 ◽  
Vol 20 (19) ◽  
pp. 4912 ◽  
Author(s):  
Annunziatina Laurino ◽  
Valentina Spinelli ◽  
Manuela Gencarelli ◽  
Valentina Balducci ◽  
Leonardo Dini ◽  
...  

Skeletal muscle regeneration is ensured by satellite cells (SC), which upon activation undergo self-renewal and myogenesis. The correct sequence of healing events may be offset by inflammatory and/or fibrotic factors able to promote fibrosis and consequent muscle wasting. Angiotensin-II (Ang) is an effector peptide of the renin angiotensin system (RAS), of which the direct role in human SCs (hSCs) is still controversial. Based on the hypertrophic and fibrogenic effects of Ang via transient receptor potential canonical (TRPC) channels in cardiac and renal tissues, we hypothesized a similar axis in hSCs. Toward this aim, we demonstrated that hSCs respond to acute Ang stimulation, dose-dependently enhancing p-mTOR, p-AKT, p-ERK1/2 and p-P38. Additionally, sub-acute Ang conditioning increased cell size and promoted trans-differentiation into myofibroblasts. To provide a mechanistic hypothesis on TRPC channel involvement in the processes, we proved that TRPC channels mediate a basal calcium entry into hSCs that is stimulated by acute Ang and strongly amplified by sub-chronic Ang conditioning. Altogether, these findings demonstrate that Ang induces a fate shift of hSCs into myofibroblasts and provide a basis to support a benefit of RAS and TRPC channel blockade to oppose muscle fibrosis.


Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 218 ◽  
Author(s):  
Michael Mederos y Schnitzler ◽  
Thomas Gudermann ◽  
Ursula Storch

Transient receptor potential classical or canonical 4 (TRPC4) and TRPC5 channels are members of the classical or canonical transient receptor potential (TRPC) channel family of non-selective cation channels. TRPC4 and TRPC5 channels are widely accepted as receptor-operated cation channels that are activated in a phospholipase C-dependent manner, following the Gq/11 protein-coupled receptor activation. However, their precise activation mechanism has remained largely elusive for a long time, as the TRPC4 and TRPC5 channels were considered as being insensitive to the second messenger diacylglycerol (DAG) in contrast to the other TRPC channels. Recent findings indicate that the C-terminal interactions with the scaffolding proteins Na+/H+ exchanger regulatory factor 1 and 2 (NHERF1 and NHERF2) dynamically regulate the DAG sensitivity of the TRPC4 and TRPC5 channels. Interestingly, the C-terminal NHERF binding suppresses, while the dissociation of NHERF enables, the DAG sensitivity of the TRPC4 and TRPC5 channels. This leads to the assumption that all of the TRPC channels are DAG sensitive. The identification of the regulatory function of the NHERF proteins in the TRPC4/5-NHERF protein complex offers a new starting point to get deeper insights into the molecular basis of TRPC channel activation. Future studies will have to unravel the physiological and pathophysiological functions of this multi-protein channel complex.


Sign in / Sign up

Export Citation Format

Share Document