scholarly journals Integrated analyses of the single-cell ATAC-seq and RNA-seq reveal the epigenetic landscape of human ovarian aging

Author(s):  
Yunzhao Xu ◽  
Jinling Chen ◽  
Shuting Gu ◽  
Yuanlin Liu ◽  
Huihua Ni ◽  
...  

Abstract Studying the molecular mechanisms of ovarian aging is crucial for understanding the age-related fertility issues in females. Recently, a single-cell transcriptomic roadmap of ovarian aging based on non-human primates revealed the molecular signatures of the oocytes at different developmental stages. Herein, we present the first epigenetic landscape of human ovarian aging, through an integrated analysis of the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and single-cell RNA-seq. We depicted the transcriptional profiles and chromatin accessibility of the ovarian tissues isolated from old (n=4) and young (n=2) donors. The unsupervised clustering of data revealed seven distinct cell populations in the ovarian tissues and six subtypes of oocytes, which could be distinguished by age difference. Further analysis of the scATAC-seq data from the young and old oocytes revealed that the interaction between the Notch signaling pathway and AP-1 family transcription factors may crucially determine oocyte aging. Finally, a machine-learning algorithm was applied to calculate the optimal model based on the single-cell dataset for predicting oocyte aging, which exhibited excellent accuracy with a cross-validated area under the receiver operating characteristics score of 0.99. In summary, this study provides a comprehensive understanding of human ovarian aging at both the transcriptomic and epigenetic levels, based on an integrated analysis of large-scale single-cell datasets. We believe our results will shed light on the discovery of potential therapeutic targets or diagnostic markers for age-related ovarian disorders.

2021 ◽  
Author(s):  
Yunzhao Xu ◽  
Jinling Chen ◽  
Shuting Gu ◽  
Yuanlin Liu ◽  
Huihua Ni ◽  
...  

Studying the molecular mechanisms of ovarian aging is crucial for understanding the age-related fertility issues in females. Recently, a single-cell transcriptomic roadmap of ovarian aging based on non-human primates revealed the molecular signatures of the oocytes at different developmental stages. Herein, we present the first epigenetic landscape of human ovarian aging, through an integrated analysis of the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and single-cell RNA-seq. We depicted the transcriptional profiles and chromatin accessibility of the ovarian tissues isolated from old (n=4) and young (n=2) donors. The unsupervised clustering of data revealed seven distinct cell populations in the ovarian tissues and six subtypes of oocytes, which could be distinguished by age difference. Further analysis of the scATAC-seq data from the young and old oocytes revealed that the interaction between the Notch signaling pathway and AP-1 family transcription factors may crucially determine oocyte aging. Finally, a machine-learning algorithm was applied to calculate the optimal model based on the single-cell dataset for predicting oocyte aging, which exhibited excellent accuracy with a cross-validated area under the receiver operating characteristics score of 0.99. In summary, this study provides a comprehensive understanding of human ovarian aging at both the transcriptomic and epigenetic levels, based on an integrated analysis of large-scale single-cell datasets. We believe our results will shed light on the discovery of potential therapeutic targets or diagnostic markers for age-related ovarian disorders.


2021 ◽  
Author(s):  
Chrysa Nikopoulou ◽  
Niklas Kleinenkuhnen ◽  
Swati Parekh ◽  
Tonantzi Sandoval ◽  
Farina Schneider ◽  
...  

Epigenetic ageing clocks have revealed that tissues within an organism can age with different velocity. However, it has not been explored whether cells of one type experience different ageing trajectories within a tissue depending on their location. Here, we employed lipidomics, spatial transcriptomics and single-cell ATAC-seq in conjunction with available single-cell RNA-seq data to address how cells in the murine liver are affected by age-related changes of the microenvironment. Integration of the datasets revealed zonation-specific and age-related changes in metabolic states, the epigenome and transcriptome. Particularly periportal hepatocytes were characterized by decreased mitochondrial function and strong alterations in the epigenetic landscape, while pericentral hepatocytes,despite accumulation of large lipid droplets, did not show apparent functional differences. In general, chromatin alterations did not correlate well with transcriptional changes, hinting at post-transcriptional processes that shape gene expression during ageing. Together, we provide evidence that changing microenvironments within a tissue exert strong influences on their resident cells that can shape epigenetic, metabolic and phenotypic outputs.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Frederique Murielle Ruf-Zamojski ◽  
Michel A Zamojski ◽  
German Nudelman ◽  
Yongchao Ge ◽  
Natalia Mendelev ◽  
...  

Abstract The pituitary gland is a critical regulator of the neuroendocrine system. To further our understanding of the classification, cellular heterogeneity, and regulatory landscape of pituitary cell types, we performed and computationally integrated single cell (SC)/single nucleus (SN) resolution experiments capturing RNA expression, chromatin accessibility, and DNA methylation state from mouse dissociated whole pituitaries. Both SC and SN transcriptome analysis and promoter accessibility identified the five classical hormone-producing cell types (somatotropes, gonadotropes (GT), lactotropes, thyrotropes, and corticotropes). GT cells distinctively expressed transcripts for Cga, Fshb, Lhb, Nr5a1, and Gnrhr in SC RNA-seq and SN RNA-seq. This was matched in SN ATAC-seq with GTs specifically showing open chromatin at the promoter regions for the same genes. Similarly, the other classically defined anterior pituitary cells displayed transcript expression and chromatin accessibility patterns characteristic of their own cell type. This integrated analysis identified additional cell-types, such as a stem cell cluster expressing transcripts for Sox2, Sox9, Mia, and Rbpms, and a broadly accessible chromatin state. In addition, we performed bulk ATAC-seq in the LβT2b gonadotrope-like cell line. While the FSHB promoter region was closed in the cell line, we identified a region upstream of Fshb that became accessible by the synergistic actions of GnRH and activin A, and that corresponded to a conserved region identified by a polycystic ovary syndrome (PCOS) single nucleotide polymorphism (SNP). Although this locus appears closed in deep sequencing bulk ATAC-seq of dissociated mouse pituitary cells, SN ATAC-seq of the same preparation showed that this site was specifically open in mouse GT, but closed in 14 other pituitary cell type clusters. This discrepancy highlighted the detection limit of a bulk ATAC-seq experiment in a subpopulation, as GT represented ~5% of this dissociated anterior pituitary sample. These results identified this locus as a candidate for explaining the dual dependence of Fshb expression on GnRH and activin/TGFβ signaling, and potential new evidence for upstream regulation of Fshb. The pituitary epigenetic landscape provides a resource for improved cell type identification and for the investigation of the regulatory mechanisms driving cell-to-cell heterogeneity. Additional authors not listed due to abstract submission restrictions: N. Seenarine, M. Amper, N. Jain (ISMMS).


2019 ◽  
Vol 26 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Volkan Turan ◽  
Kutluk Oktay

Abstract BACKGROUND Oocyte aging has significant clinical consequences, and yet no treatment exists to address the age-related decline in oocyte quality. The lack of progress in the treatment of oocyte aging is due to the fact that the underlying molecular mechanisms are not sufficiently understood. BRCA1 and 2 are involved in homologous DNA recombination and play essential roles in ataxia telangiectasia mutated (ATM)-mediated DNA double-strand break (DSB) repair. A growing body of laboratory, translational and clinical evidence has emerged within the past decade indicating a role for BRCA function and ATM-mediated DNA DSB repair in ovarian aging. OBJECTIVE AND RATIONALE Although there are several competing or complementary theories, given the growing evidence tying BRCA function and ATM-mediated DNA DSB repair mechanisms in general to ovarian aging, we performed this review encompassing basic, translational and clinical work to assess the current state of knowledge on the topic. A clear understanding of the mechanisms underlying oocyte aging may result in targeted treatments to preserve ovarian reserve and improve oocyte quality. SEARCH METHODS We searched for published articles in the PubMed database containing key words, BRCA, BRCA1, BRCA2, Mutations, Fertility, Ovarian Reserve, Infertility, Mechanisms of Ovarian Aging, Oocyte or Oocyte DNA Repair, in the English-language literature until May 2019. We did not include abstracts or conference proceedings, with the exception of our own. OUTCOMES Laboratory studies provided robust and reproducible evidence that BRCA1 function and ATM-mediated DNA DSB repair, in general, weakens with age in oocytes of multiple species including human. In both women with BRCA mutations and BRCA-mutant mice, primordial follicle numbers are reduced and there is accelerated accumulation of DNA DSBs in oocytes. In general, women with BRCA1 mutations have lower ovarian reserves and experience earlier menopause. Laboratory evidence also supports critical role for BRCA1 and other ATM-mediated DNA DSB repair pathway members in meiotic function. When laboratory, translational and clinical evidence is considered together, BRCA-related ATM-mediated DNA DSB repair function emerges as a likely regulator of ovarian aging. Moreover, DNA damage and repair appear to be key features in chemotherapy-induced ovarian aging. WIDER IMPLICATIONS The existing data suggest that the BRCA-related ATM-mediated DNA repair pathway is a strong candidate to be a regulator of oocyte aging, and the age-related decline of this pathway likely impairs oocyte health. This knowledge may create an opportunity to develop targeted treatments to reverse or prevent physiological or chemotherapy-induced oocyte aging. On the immediate practical side, women with BRCA or similar mutations may need to be specially counselled for fertility preservation.


2016 ◽  
Vol 32 (14) ◽  
pp. 2219-2220 ◽  
Author(s):  
Aaron Diaz ◽  
Siyuan J. Liu ◽  
Carmen Sandoval ◽  
Alex Pollen ◽  
Tom J. Nowakowski ◽  
...  

2019 ◽  
Author(s):  
Huiyan Hu ◽  
Qing Jia ◽  
Jianzhong Xi ◽  
Bo Zhou ◽  
Zhiqiang Li

Abstract Background: Improving sow fertility is extremely important as it can lead to increased reproductive efficiency and thus profitability for swine producers. There are considerable differences in fertility rates among individual animals, but the underlying molecular mechanisms remain unclear. In this study, by using different types of RNA libraries, we investigated the complete transcriptome of ovarian tissue during the luteal (L) and follicular phases (F) of the estrous cycle in Large White pigs with high (H) and low fecundity (L), and performed a comprehensive analysis of long noncoding RNAs (lncRNAs), mRNAs and micro RNAs (miRNAs) from 16 samples by combining RNA sequencing (RNA-seq) with bioinformatics. Results: In total, 24,447 lncRNAs, 27,370 mRNAs, and 216 known miRNAs were identified in ovarian tissues. The genomic features of lncRNAs, such as length distribution and number of exons, were further analyzed. We selected a threshold of P < 0.05 and |log2 (fold change)| ≥ 1to obtain the differentially expressed lncRNAs, miRNAs and mRNAs by pairwise comparison (LH vs. LL, FH vs. FL). Bioinformatics analysis of these differentially expressed RNAs revealed multiple significantly enriched pathways (P < 0.05) that were closely involved in the reproductive process, such as ovarian steroidogenesis, lysosome, steroid biosynthesis, and the estrogen and GnRH signaling pathways. Moreover, bioinformatics screening of differentially expressed miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets were performed. Finally, we constructed lncRNA–miRNA–mRNA regulation networks. The key genes in these networks were verified by Reverse Transcription Real-time Quantitative PCR (RT-qRCR), which were consistent with the results from RNA-Seq data.Conclusions: These results provide further insights into the fertility of pigs and can contribute to further experimental investigation of the functions of these genes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5046-5046
Author(s):  
Fuchou Tang

Abstract Haematopoietic stem cells (HSCs) are derived early from embryonic precursor cells, such as haemogenic endothelial cells and pre-HSCs. However, the identity of precursor cells remains elusive due to their rareness, transience, and inability to be isolated efficiently. Here we employed potent surface markers to capture the nascent pre-HSCs at 30% purity, as rigorously validated by single-cell-initiated serial transplantation assay. Then we applied single-cell RNA-Seq technique to analyse five populations closely related to HSC formation: endothelial cells, CD45- and CD45+ pre-HSCs in E11 aorta-gonad-mesonephros (AGM) region, and mature HSCs in E12 and E14 foetal liver. In comparison, the pre-HSCs showed unique features in transcriptional machinery, arterial signature, apoptosis, metabolism state, signalling pathway, transcription factor network, and lncRNA expression pattern. Among signalling pathways enriched in pre-HSCs, the mTOR activation was uncovered indispensable for the emergence of HSCs but not haematopoietic progenitors from endothelial cells in vivo. Transcriptome data-based functional analysis revealed de novo the remarkable heterogeneity in cell cycle status of pre-HSCs, with considerable proportion being actively proliferative. By comparing with proximal populations without HSC potential, the core molecular signature of pre-HSCs was identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating the step-wise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical application. Disclosures No relevant conflicts of interest to declare.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Huiyan Hu ◽  
Qing Jia ◽  
Jianzhong Xi ◽  
Bo Zhou ◽  
Zhiqiang Li

Abstract Background Improving sow fertility is extremely important as it can lead to increased reproductive efficiency and thus profitability for swine producers. There are considerable differences in fertility rates among individual animals, but the underlying molecular mechanisms remain unclear. In this study, by using different types of RNA libraries, we investigated the complete transcriptome of ovarian tissue during the luteal (L) and follicular (F) phases of the estrous cycle in Large White pigs with high (H) and low (L) fecundity, and performed a comprehensive analysis of long noncoding RNAs (lncRNAs), mRNAs and micro RNAs (miRNAs) from 16 samples by combining RNA sequencing (RNA-seq) with bioinformatics. Results In total, 24,447 lncRNAs, 27,370 mRNAs, and 216 known miRNAs were identified in ovarian tissues. The genomic features of lncRNAs, such as length distribution and number of exons, were further analyzed. We selected a threshold of P < 0.05 and |log2 (fold change)| ≥ 1 to obtain the differentially expressed lncRNAs, miRNAs and mRNAs by pairwise comparison (LH vs. LL, FH vs. FL). Bioinformatics analysis of these differentially expressed RNAs revealed multiple significantly enriched pathways (P < 0.05) that were closely involved in the reproductive process, such as ovarian steroidogenesis, lysosome, steroid biosynthesis, and the estrogen and GnRH signaling pathways. Moreover, bioinformatics screening of differentially expressed miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets were performed. Finally, we constructed lncRNA–miRNA–mRNA regulation networks. The key genes in these networks were verified by Reverse Transcription Real-time Quantitative PCR (RT-qRCR), which were consistent with the results from RNA-Seq data. Conclusions These results provide further insights into the fertility of pigs andcan contribute to further experimental investigation of the functions of these genes.


2012 ◽  
Vol 24 (4) ◽  
pp. 1427-1442 ◽  
Author(s):  
Oksana Yu. Naumova ◽  
Dean Palejev ◽  
Natalia V. Vlasova ◽  
Maria Lee ◽  
Sergei Yu. Rychkov ◽  
...  

AbstractThe study of gene expression (i.e., the study of the transcriptome) in different cells and tissues allows us to understand the molecular mechanisms of their differentiation, development and functioning. In this article, we describe some studies of gene-expression profiling for the purposes of understanding developmental (age-related) changes in the brain using different technologies (e.g., DNA-Microarray) and the new and increasingly popular RNA-Seq. We focus on advancements in studies of gene expression in the human brain, which have provided data on the structure and age-related variability of the transcriptome in the brain. We present data on RNA-Seq of the transcriptome in three distinct areas of the neocortex from different ages: mature and elderly individuals. We report that most age-related transcriptional changes affect cellular signaling systems, and, as a result, the transmission of nerve impulses. In general, the results demonstrate the high potential of RNA-Seq for the study of distinctive features of gene expression among cortical areas and the changes in expression through normal and atypical development of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document