scholarly journals SAT-298 Integrative Single-Cell Transcriptomic and Epigenomic Landscape of Mouse Anterior Pituitary Cell Types

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Frederique Murielle Ruf-Zamojski ◽  
Michel A Zamojski ◽  
German Nudelman ◽  
Yongchao Ge ◽  
Natalia Mendelev ◽  
...  

Abstract The pituitary gland is a critical regulator of the neuroendocrine system. To further our understanding of the classification, cellular heterogeneity, and regulatory landscape of pituitary cell types, we performed and computationally integrated single cell (SC)/single nucleus (SN) resolution experiments capturing RNA expression, chromatin accessibility, and DNA methylation state from mouse dissociated whole pituitaries. Both SC and SN transcriptome analysis and promoter accessibility identified the five classical hormone-producing cell types (somatotropes, gonadotropes (GT), lactotropes, thyrotropes, and corticotropes). GT cells distinctively expressed transcripts for Cga, Fshb, Lhb, Nr5a1, and Gnrhr in SC RNA-seq and SN RNA-seq. This was matched in SN ATAC-seq with GTs specifically showing open chromatin at the promoter regions for the same genes. Similarly, the other classically defined anterior pituitary cells displayed transcript expression and chromatin accessibility patterns characteristic of their own cell type. This integrated analysis identified additional cell-types, such as a stem cell cluster expressing transcripts for Sox2, Sox9, Mia, and Rbpms, and a broadly accessible chromatin state. In addition, we performed bulk ATAC-seq in the LβT2b gonadotrope-like cell line. While the FSHB promoter region was closed in the cell line, we identified a region upstream of Fshb that became accessible by the synergistic actions of GnRH and activin A, and that corresponded to a conserved region identified by a polycystic ovary syndrome (PCOS) single nucleotide polymorphism (SNP). Although this locus appears closed in deep sequencing bulk ATAC-seq of dissociated mouse pituitary cells, SN ATAC-seq of the same preparation showed that this site was specifically open in mouse GT, but closed in 14 other pituitary cell type clusters. This discrepancy highlighted the detection limit of a bulk ATAC-seq experiment in a subpopulation, as GT represented ~5% of this dissociated anterior pituitary sample. These results identified this locus as a candidate for explaining the dual dependence of Fshb expression on GnRH and activin/TGFβ signaling, and potential new evidence for upstream regulation of Fshb. The pituitary epigenetic landscape provides a resource for improved cell type identification and for the investigation of the regulatory mechanisms driving cell-to-cell heterogeneity. Additional authors not listed due to abstract submission restrictions: N. Seenarine, M. Amper, N. Jain (ISMMS).

Endocrinology ◽  
2000 ◽  
Vol 141 (8) ◽  
pp. 3020-3034 ◽  
Author(s):  
Rajaa El Meskini ◽  
Richard E. Mains ◽  
Betty A. Eipper

Peptidylglycine α-amidating monooxygenase (PAM) is a bifunctional enzyme expressed in each major anterior pituitary cell type. We used primary cultures of adult male rat anterior pituitary to examine PAM expression, processing, and secretion in the different pituitary cell types and to compare these patterns to those observed in transfected AtT-20 corticotrope tumor cells. Immunostaining and subcellular fractionation identified PAM in pituitary secretory granules and additional vesicular compartments; in contrast, in AtT-20 cells, transfected PAM was primarily localized to the trans-Golgi network. PAM expression was highest in gonadotropes, with moderate levels in somatotropes and thyrotropes and lower levels in corticotropes and lactotropes. Under basal conditions, less than 1% of the cell content of monooxygenase activity was secreted per h, a rate comparable to the basal rate of release of individual pituitary hormones. General secretagogues stimulated PAM secretion 3- to 5-fold. Stimulation with specific hypothalamic releasing hormones demonstrated that different pituitary cell types secrete characteristic sets of PAM proteins. Gonadotropes and thyrotropes release primarily monofunctional monooxygenase. Somatotropes secrete primarily bifunctional PAM, whereas corticotropes secrete a mixture of mono- and bifunctional proteins. As observed in transfected AtT-20 cells, pituitary cells rapidly internalize the PAM/PAM-antibody complex from the cell surface. The distinctly different steady-state localizations of endogenous PAM in primary pituitary cells and transfected PAM in AtT-20 cell lines may simply reflect the increased storage capacity of primary pituitary cells.


2020 ◽  
Author(s):  
Timothy J. Durham ◽  
Riza M. Daza ◽  
Louis Gevirtzman ◽  
Darren A. Cusanovich ◽  
William Stafford Noble ◽  
...  

AbstractRecently developed single cell technologies allow researchers to characterize cell states at ever greater resolution and scale. C. elegans is a particularly tractable system for studying development, and recent single cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns are useful for learning about gene function and give insight into the biochemical state of different cell types; however, in order to understand these cell types, we must also determine how these gene expression levels are regulated. We present the first single cell ATAC-seq study in C. elegans. We collected data in L2 larvae to match the available single cell RNA-seq data set, and we identify tissue-specific chromatin accessibility patterns that align well with existing data, including the L2 single cell RNA-seq results. Using a novel implementation of the latent Dirichlet allocation algorithm, we leverage the single-cell resolution of the sci-ATAC-seq data to identify accessible loci at the level of individual cell types, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation in the worm.


Author(s):  
Michael A. Skinnider ◽  
Jordan W. Squair ◽  
Claudia Kathe ◽  
Mark A. Anderson ◽  
Matthieu Gautier ◽  
...  

We present a machine-learning method to prioritize the cell types most responsive to biological perturbations within high-dimensional single-cell data. We validate our method, Augur (https://github.com/neurorestore/Augur), on a compendium of single-cell RNA-seq, chromatin accessibility, and imaging transcriptomics datasets. We apply Augur to expose the neural circuits that enable walking after paralysis in response to spinal cord neurostimulation.


1988 ◽  
Vol 139 (1) ◽  
pp. 287-316
Author(s):  
W. T. Mason ◽  
S. R. Rawlings ◽  
P. Cobbett ◽  
S. K. Sikdar ◽  
R. Zorec ◽  
...  

Normal anterior pituitary cells, in their diversity and heterogeneity, provide a rich source of models for secretory function. However, until recently they have largely been neglected in favour of neoplastic, clonal tumour cell lines of pituitary origin, which have enabled a number of studies on supposedly homogeneous cell types. Because many of these lines appear to lack key peptide and neurotransmitter receptors, as well as being degranulated with accompanying abnormal levels of secretion, we have developed a range of normal primary anterior pituitary cell cultures using dispersion and enrichment techniques. By studying lactotrophs, somatotrophs and gonadotrophs we have revealed a number of possible transduction mechanisms by which receptors for hypothalamic peptides and neurotransmitters may control secretion. In particular, the transduction events controlling secretion from pituitary cells may differ fundamentally from those found in other cell types. Patch-clamp recordings in these various pituitary cell preparations have revealed substantial populations of voltage-dependent Na+, Ca2+ and K+ channels which may support action potentials in these cells. Although activation of these channels may gate Ca2+ entry to the cells under some conditions, our evidence taken with that of other laboratories suggests that peptide-receptor interactions leading to hormone secretion occur independently of significant membrane depolarization. Rather, secretion of hormone and rises in intracellular calcium measured with new probes for intracellular calcium activity, can occur in response to hypothalamic peptide activation in the absence of substantial changes in membrane potential. These changes in intracellular calcium activity almost certainly depend on both intracellular and extracellular calcium sources. In addition, strong evidence of a role for multiple intracellular receptors and modulators in the secretory event suggests we should consider the plasma membrane channels important for regulation of hormone secretion to be predominantly agonist-activated, rather than of the more conventional voltage-dependent type. Likewise, evidence from new methods for recording single ion channels suggests the existence of intracellular sites for channel modulation, implying they too may play an important role in secretory regulation. We shall consider new data and new technology which we hope will provide key answers to the many intriguing questions surrounding the control of pituitary hormone secretion. We shall highlight our work with recordings of single ion channels activated by peptides, and recent experiments using imaging of intracellular ionized free calcium.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2021 ◽  
Author(s):  
Zhengyu Ouyang ◽  
Nathanael Bourgeois ◽  
Eugenia Lyashenko ◽  
Paige Cundiff ◽  
Patrick F Cullen ◽  
...  

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunxiang Wang ◽  
Xin Gao ◽  
Juntao Liu

Abstract Background Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite different effects on clustering algorithms. Moreover, there is no specific preprocessing method that is applicable to all clustering algorithms, and even for the same clustering algorithm, the best preprocessing method depends on the input data. Results We designed a graph-based algorithm, SC3-e, specifically for discriminating the best data preprocessing method for SC3, which is currently the most widely used clustering algorithm for single cell clustering. When tested on eight frequently used single-cell RNA-seq data sets, SC3-e always accurately selects the best data preprocessing method for SC3 and therefore greatly enhances the clustering performance of SC3. Conclusion The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qingnan Liang ◽  
Rachayata Dharmat ◽  
Leah Owen ◽  
Akbar Shakoor ◽  
Yumei Li ◽  
...  

AbstractSingle-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of multiple cell types with distinct functions. Six samples from three healthy donors are profiled and high-quality RNA-seq data is obtained for 5873 single nuclei. All major retinal cell types are observed and marker genes for each cell type are identified. The gene expression of the macular and peripheral retina is compared to each other at cell-type level. Furthermore, our dataset shows an improved power for prioritizing genes associated with human retinal diseases compared to both mouse single-cell RNA-seq and human bulk RNA-seq results. In conclusion, we demonstrate that obtaining single cell transcriptomes from human frozen tissues can provide insight missed by either human bulk RNA-seq or animal models.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Dylan Kotliar ◽  
Adrian Veres ◽  
M Aurel Nagy ◽  
Shervin Tabrizi ◽  
Eran Hodis ◽  
...  

Identifying gene expression programs underlying both cell-type identity and cellular activities (e.g. life-cycle processes, responses to environmental cues) is crucial for understanding the organization of cells and tissues. Although single-cell RNA-Seq (scRNA-Seq) can quantify transcripts in individual cells, each cell’s expression profile may be a mixture of both types of programs, making them difficult to disentangle. Here, we benchmark and enhance the use of matrix factorization to solve this problem. We show with simulations that a method we call consensus non-negative matrix factorization (cNMF) accurately infers identity and activity programs, including their relative contributions in each cell. To illustrate the insights this approach enables, we apply it to published brain organoid and visual cortex scRNA-Seq datasets; cNMF refines cell types and identifies both expected (e.g. cell cycle and hypoxia) and novel activity programs, including programs that may underlie a neurosecretory phenotype and synaptogenesis.


Sign in / Sign up

Export Citation Format

Share Document