scholarly journals A New Strategy for Improving the Surface Quality of Ti6Al4V Machined by Abrasive Water Jet: Reverse Cutting with Variable Standoff Distances

Author(s):  
Jie Xiong ◽  
Liang Wan ◽  
Yi'nan Qian ◽  
Shuo Sun ◽  
Deng Li ◽  
...  

Abstract Titanium alloys are widely used in important structures of aerospace vehicles, but the low thermal conductivity and high chemical activity make them difficult to process. As an untraditional machining technology, abrasive water jet (AWJ) has been proven to be an effective method for this kind of material. Aimed at further improving the cutting performance, reverse cutting with variable standoff distance (SOD) strategy was put forward, and experiments of titanium alloy Ti6Al4V machined by AWJ were conducted. The influence of SOD with different reverse cutting types on the kerf quality was studied to obtain the optimal SOD combinations. Ra, Sa and kerf taper were used to evaluate the quality of the machined surface. Moreover, the results of reverse cutting at the same speed and efficiency and single cutting at the constant SOD were compared and analyzed. It was found that the proposed strategy results in higher kerf quality in the aspect of surface roughness, compared to the single cutting. To be more specific, for the reverse trimming cutting, the improvements of Ra and Sa can reach up to 62.8% and 73.1% respectively under the condition of the SOD of the second cutting is 8mm. Furthermore, the kerf taper can be reduced 26.1% when the SOD of the second cutting is 2mm. With respect to the reverse deepening cutting, even the traverse speed of reverse cutting is set as twice as that of a single cutting, the kerf quality is still better. Additionally, when the SOD of the second cutting is 4mm, the improvements of Ra and Sa can reach up to 51.7% and 14.9%, respectively, and the kerf taper is reduced by 20.2%. This study provides a new method for improving the machined surface quality of hard materials, especially for Ti6Al4V.

2019 ◽  
Vol 950 ◽  
pp. 32-37 ◽  
Author(s):  
Qi Wen Xu ◽  
Chi Heng Qiang ◽  
Chu Wen Guo

Through the experiment of cutting 1060 Aluminum Alloy by Abrasive Water Jet (AWJ), the surface roughness of material which is cut by AWJ is controlled by the cutting work pressure, cutting stand-off distance, cutting traverse speed and the abrasive diameter which used in AWJ. Measuring the cutting surface roughness of 1060 Aluminum Alloy by stereomicroscope and surfagauge, among the factor which can affect the surface roughness, the cutting traverse speed play a dominant role to control the surface roughness in the process of cutting. As the result of the surface roughness of 1060 Aluminum Alloy at different cutting depth is different, which can be separated in two different zones (Smooth area and Rough zone). As the result of experiment, the abrasive diameter has little effect to change the surface roughness between two different zones. The surface quality of rough zone can be improved when change the diameter of abrasive: with the diameter of abrasive increase, the surface quality of rough zone become better. A higher cutting pressure can improve the surface quality of the cutting surface of 1060 Aluminum Alloy. While increase the cutting traverse speed in the process of cutting can decrease the surface quality of 1060 Aluminum Alloy cutting surface. In a certain range, increase the cutting stand-off distance of AWJ can decrease the surface roughness of the cutting surface, and the roughness of cutting surface will change little when the stand-off distance increases to a certain extent.


2021 ◽  
Vol 1016 ◽  
pp. 1374-1380
Author(s):  
Xavier Sourd ◽  
Mehdi Salem ◽  
Redouane Zitoune ◽  
Akshay Hejjaji ◽  
Damien Lamouche

Abrasive Water Jet (AWJ) machining has proven to be an effective and versatile technique for milling various kinds of materials, even with low machinability such as aerospace grade titanium alloy Ti6Al4V. Many studies have been performed in order to master this technology and produce geometrically accurate shapes. However, in the context of bonding repairs which require surfaces free from foreign bodies, AWJ machining presents a significant drawback in form of abrasive grit embedment. The goal of this present work is then to investigate the effect of a post-AWJ machining cleaning operation using Plain Water Jet process (PWJ – i.e. without abrasive particles) on the surface quality and material properties. For this, several characterization techniques were employed. It was concluded that the contamination has been reduced by 65% without noticeable changes in depth of cut and crater volume. The AWJ milling operation produced surface and subsurface hardening as well as biaxial compressive residual stress, mostly piloted by the jet pressure. PWJ cleaning reduced the depth of hardening without clear modification in surface hardness.


2012 ◽  
Vol 565 ◽  
pp. 351-356
Author(s):  
Gustavo A. Escobar-Palafox ◽  
Rosemary S. Gault ◽  
Keith Ridgway

Experiments were carried out in Inconel 718 in order to investigate the effect of abrasive water-jet process variables on surface and subsurface condition. A Design of Experiments (DoE) approach was taken, considering variables such as water pressure, traverse rate, abrasive mass flow rate and abrasive grit size. The experimental variables were related to taper ratio, surface roughness of different zones in the machined surface and subsurface condition (deformation and crater depth). Statistical analysis was carried out in order to develop mathematical models which include process variable interactions and quadratic terms. This led to models with high correlation and prediction power which allow a better understanding of the process and can form the base for further process optimisation. The models were validated with additional experiments and showed good agreement with the water jet system. The results showed that water pressure has a nonlinear behaviour in the quality of the surface and sub-surfaces and that interaction between the variables had a significant effect on the quality of the surfaces and sub-surfaces generated by the AWJ.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1652
Author(s):  
Tibor Krenicky ◽  
Milos Servatka ◽  
Stefan Gaspar ◽  
Jozef Mascenik

The paper aims to study the surface quality dependency on selected parameters of cuts made in Hardox™ by abrasive water jet (AWJ). The regression process was applied on measured data and the equations were prepared for both the Ra and Rz roughness parameters. One set of regression equations was prepared for the relationship of Ra and Rz on cutting parameters—pumping pressure, traverse speed, and abrasive mass flow rate. The second set of regression equations describes relationships between the declination angle in kerf as the independent variable and either the Ra or the Rz parameters as dependent variables. The models can be used to predict cutting variables to predict the surface quality parameters.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Ramy Abdullah ◽  
Ahmed Mahrous ◽  
Azza Barakat

2013 ◽  
Vol 837 ◽  
pp. 201-205 ◽  
Author(s):  
Carol Schnakovszky ◽  
Eugen Herghelegiu ◽  
Nicolae Catalin Tampu

Abrasive water jet (AWJ) is a nonconventional machining process in which abrasive grains in a high-speed water jet collide with the sample and erode it. This technology has been developed as an alternative to the conventional processes in order to facilitate the processing of hard materials as stainless steel, titanium alloys, composite materials, etc. However, it is not limited only to hard materials, since it has been successfully applied to process softer materials as aluminum, copper, plastics. Also, the abrasive water jet technology can be used both, to process thin metal sheets and plates since it offers many advantages such as: good surface quality, no thermal distortions, minimal burrs, low machining force, high flexibility. The aim of the current paper was to study the surfaces quality of samples made by aluminium, A1050, processed by AWJ in case of using different working regimes. The experimental tests have been performed on the Hydro-jet Eco 0615 water jet cutting machine. The parameters that have been varied were pressure, feed rate, abrasive quantity, distance between the cutting head and working sample while the diameter of focusing tube and diameter of water nozzle have been kept constant. The parameters taken into account to quantify the quality of the processed surface were those defined in the ISO/WD/TC 44 N 1770 standard (fig. 1): width of the processed surface at the jet inlet (Li), width of the processed surface at the jet outlet (Lo), deviation from perpendicularity (u), inclination angle (α) and roughness (Ra).


Sign in / Sign up

Export Citation Format

Share Document