Anthropogenic Climate Change Drives the Melting of Glaciers in the Himalaya

Author(s):  
Shakil A Romshoo ◽  
Khalid Omar Murtaza ◽  
Waheed Shah ◽  
Tawseef Ramzan ◽  
Ummer Ameen ◽  
...  

Abstract The Himalayan glaciers supply water to a large population in south Asia for various uses and ecosystem services. Therefore, regional monitoring of glacier melting and identifying the drivers thereof is important to understand and predict the future trends of cryospheric melting. Using multi-date satellite images from 2000-2020, we investigated the shrinkage, snout retreat, thickness changes, mass loss and velocity changes of 77 glaciers in the Drass basin, western Himalaya, India. The overall glacier cover has shrunk by 5.31±0.33 km2 during the period. Snout retreat varied between 30-430 m (mean 155±9.58 m). Debris-cover showed a significant influence on the glacier melting with the clean glaciers showing a higher loss of ~5% compared to the debris-covered glaciers (~2%). The glaciers on an average have shown thickness change and mass loss of -1.27±0.37 and -1.08±0.31 m w.e.a-1 respectively. Average glacier velocity has reduced from 21.35±3.3 m a-1 in 2000 to 16.68±1.9 m a-1 by 2020 due to the continuous melting and the consequent mass loss of the glaciers. Concentration of the greenhouse gases (GHGs), black carbon and other pollutants from vehicular traffic plying in the vicinity of the glaciers has significantly increased during the observation period. Increasing temperatures, result of the significant increase of the GHGs and pollutants in the atmosphere, drive the glacier melting in the study area. If the situation continues in the future, the glaciers may disappear altogether in the Himalaya leading to significant impact on the regional water supplies, hydrological processes, ecosystem services and transboundary sharing of waters.

2010 ◽  
Vol 4 (4) ◽  
pp. 2593-2613 ◽  
Author(s):  
T. Bolch ◽  
T. Pieczonka ◽  
D. I. Benn

Abstract. Mass loss of Himalayan glaciers has wide-ranging consequences such as declining water resources, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated since the availability of stereo imagery. Here we present the longest time series of mass changes in the Himalaya and show the high value of early stereo spy imagery such as Corona (years 1962 and 1970) aerial images and recent high resolution satellite data (Cartosat-1) to calculate a time series of glacier changes south of Mt. Everest, Nepal. We reveal that the glaciers are significantly losing mass with an increasing rate since at least ~1970, despite thick debris cover. The specific mass loss is 0.32 ± 0.08 m w.e. a−1, however, not higher than the global average. The spatial patterns of surface lowering can be explained by variations in debris-cover thickness, glacier velocity, and ice melt due to exposed ice cliffs and ponds.


2011 ◽  
Vol 5 (2) ◽  
pp. 349-358 ◽  
Author(s):  
T. Bolch ◽  
T. Pieczonka ◽  
D. I. Benn

Abstract. Mass loss of Himalayan glaciers has wide-ranging consequences such as changing runoff distribution, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated. Here, we present a time series of mass changes for ten glaciers covering an area of about 50 km2 south and west of Mt. Everest, Nepal, using stereo Corona spy imagery (years 1962 and 1970), aerial images and recent high resolution satellite data (Cartosat-1). This is the longest time series of mass changes in the Himalaya. We reveal that the glaciers have been significantly losing mass since at least 1970, despite thick debris cover. The specific mass loss for 1970–2007 is 0.32 ± 0.08 m w.e. a−1, however, not higher than the global average. Comparisons of the recent DTMs with earlier time periods indicate an accelerated mass loss. This is, however, hardly statistically significant due to high uncertainty, especially of the lower resolution ASTER DTM. The characteristics of surface lowering can be explained by spatial variations of glacier velocity, the thickness of the debris-cover, and ice melt due to exposed ice cliffs and ponds.


2021 ◽  
Author(s):  
Yu Zhou ◽  
Jianlong Chen ◽  
Xiao Cheng

Abstract. Glacier evolution with time provides important information about climate variability. Here we investigate glacier surface velocity in the Himalayas and analyse the patterns of glacier flow. We collect 220 scenes of Landsat-7 panchromatic images between 1999 and 2000, and Sentinel-2 panchromatic images between 2017 and 2018, to calculate surface velocities of 36,722 glaciers during these two periods. We then derive velocity changes between 1999 and 2018, based on which we perform a detailed analysis of motion of each individual glacier, and noted that the changes are spatially heterogeneous. Of all the glaciers, 32 % have speeded up, 24.5 % have slowed down, and the rest 43.5 % remained stable. The amplitude of glacier slowdown, as a result of glacier mass loss, is remarkably larger than that of speedup. At regional scales, we found that glacier surface velocity in winter has uniformly decreased in the western part of the Himalayas between 1999 and 2018, whilst increased in the eastern part; this contrasting difference may be associated with decadal changes in accumulation and/or melting under different climatic regimes. We also found that the overall trend of surface velocity exhibits seasonal variability: summer velocity changes are positively correlated with mass loss, whereas winter velocity changes show a negative correlation. Our study suggests that glacier velocity changes in the Himalayas are more spatially and temporally heterogeneous than previously thought, emphasising complex interactions between glacier dynamics and environmental forcing.


2021 ◽  
Vol 13 (19) ◽  
pp. 3825
Author(s):  
Yu Zhou ◽  
Jianlong Chen ◽  
Xiao Cheng

Glacier evolution with time provides important information about climate variability. Here, we investigated glacier velocity changes in the Himalayas and analysed the patterns of glacier flow. We collected 220 scenes of Landsat-7 panchromatic images between 1999 and 2000, and Sentinel-2 panchromatic images between 2017 and 2018, to calculate surface velocities of 36,722 glaciers during these two periods. We then derived velocity changes between 1999 and 2018 for the early winter period, based on which we performed a detailed analysis of motion of each individual glacier, and noted that the changes are spatially heterogeneous. Of all the glaciers, 32% have sped up, 24.5% have slowed down, and the rest 43.5% have remained stable. The amplitude of glacier slowdown, as a result of glacier mass loss, is significantly larger than that of speedup. At regional scales, we found that glacier surface velocity in winter has uniformly decreased in the western part of the Himalayas between 1999 and 2018, while increased in the eastern part; this contrasting difference may be associated with decadal changes in accumulation and/or melting under different climatic regimes. We also found that the overall trend of surface velocity exhibits seasonal variability: summer velocity changes are positively correlated with mass loss, i.e., velocity increases with increasing mass loss, whereas winter velocity changes show a negative correlation. Our study suggests that glacier velocity changes in the Himalayas are spatially and temporally heterogeneous, in agreement with studies that previously highlighted this trend, emphasising complex interactions between glacier dynamics and environmental forcing.


2016 ◽  
Vol 2 (5) ◽  
pp. e1501538 ◽  
Author(s):  
Aurélien Mordret ◽  
T. Dylan Mikesell ◽  
Christopher Harig ◽  
Bradley P. Lipovsky ◽  
Germán A. Prieto

The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth’s crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.


2018 ◽  
Vol 38 (3) ◽  
pp. 192-202 ◽  
Author(s):  
Alexis Nicolás Ibáñez Blancas ◽  
María de los Ángeles La Torre-Cuadros ◽  
Gleni Aracelly Mallma Carrera

Conservation ◽  
2021 ◽  
pp. 361-400
Author(s):  
Charles Perrings

The final chapter considers the factors likely to influence the value of species and ecosystems to individual users and the wider community in the future, including the factors likely to drive a wedge between the value of ecosystems to individual users or individual communities and to the rest of the world. It reviews environmental trends identified by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, and economic trends identified by organizations such as the World Bank. Using the European Union’s subsidiarity principle as a guide, the chapter discusses the optimal scale at which to manage future conservation challenges, and the implications this has for governance. It concludes by applying the discussion to four issues of particular concern: forest conversion, the loss of landraces and crop wild relatives, marine capture fisheries, and emerging infectious zoonoses.


2016 ◽  
Vol 3 (3) ◽  
pp. 389-404 ◽  
Author(s):  
Ida Kubiszewski ◽  
Sharolyn J. Anderson ◽  
Robert Costanza ◽  
Paul C. Sutton

2021 ◽  
Vol 13 (2) ◽  
pp. 245-257
Author(s):  
Vikram S. Negi ◽  
Shinny Thakur ◽  
Rupesh Dhyani ◽  
Indra D. Bhatt ◽  
Ranbeer S. Rawal

AbstractMountains are important global sites for monitoring biological and socioecological responses to climate change, and the Himalaya has some of the world’s most rapid and visible signs of climate change. The increased frequency and severity of climate anomalies in the region are expected to significantly affect livelihoods of indigenous communities in the region. This study documents the perceptions of indigenous communities of climate change in the western Himalaya of India. The study highlights the power of knowledge and understanding available to indigenous people as they observe and respond to climate change impacts. We conducted a field-based study in 14 villages that represent diverse socioecological features along an altitudinal range of 1000–3800 m MSL in the western Himalaya. Among the sampled population, most of the respondents (>95%) agreed that climate is changing. However, people residing at low- and high-altitude villages differ significantly in their perception, with more people at high altitudes believing in an overall warming trend. Instrumental temperature and rainfall from nearby meteorological stations also supported the perception of local inhabitants. The climate change perceptions in the region were largely determined by sociodemographic variables such as age, gender, and income as well as altitude. A logistic regression, which exhibited significant association of sociodemographic characteristics with climate change perceptions, further supported these findings. The study concluded that the climate change observations of local communities can be usefully utilized to develop adaptation strategies and mitigation planning in the Himalayan region.


Sign in / Sign up

Export Citation Format

Share Document