scholarly journals Glacier Velocity Changes in the Himalayas in Relation to Ice Mass Balance

2021 ◽  
Vol 13 (19) ◽  
pp. 3825
Author(s):  
Yu Zhou ◽  
Jianlong Chen ◽  
Xiao Cheng

Glacier evolution with time provides important information about climate variability. Here, we investigated glacier velocity changes in the Himalayas and analysed the patterns of glacier flow. We collected 220 scenes of Landsat-7 panchromatic images between 1999 and 2000, and Sentinel-2 panchromatic images between 2017 and 2018, to calculate surface velocities of 36,722 glaciers during these two periods. We then derived velocity changes between 1999 and 2018 for the early winter period, based on which we performed a detailed analysis of motion of each individual glacier, and noted that the changes are spatially heterogeneous. Of all the glaciers, 32% have sped up, 24.5% have slowed down, and the rest 43.5% have remained stable. The amplitude of glacier slowdown, as a result of glacier mass loss, is significantly larger than that of speedup. At regional scales, we found that glacier surface velocity in winter has uniformly decreased in the western part of the Himalayas between 1999 and 2018, while increased in the eastern part; this contrasting difference may be associated with decadal changes in accumulation and/or melting under different climatic regimes. We also found that the overall trend of surface velocity exhibits seasonal variability: summer velocity changes are positively correlated with mass loss, i.e., velocity increases with increasing mass loss, whereas winter velocity changes show a negative correlation. Our study suggests that glacier velocity changes in the Himalayas are spatially and temporally heterogeneous, in agreement with studies that previously highlighted this trend, emphasising complex interactions between glacier dynamics and environmental forcing.

2021 ◽  
Author(s):  
Yu Zhou ◽  
Jianlong Chen ◽  
Xiao Cheng

Abstract. Glacier evolution with time provides important information about climate variability. Here we investigate glacier surface velocity in the Himalayas and analyse the patterns of glacier flow. We collect 220 scenes of Landsat-7 panchromatic images between 1999 and 2000, and Sentinel-2 panchromatic images between 2017 and 2018, to calculate surface velocities of 36,722 glaciers during these two periods. We then derive velocity changes between 1999 and 2018, based on which we perform a detailed analysis of motion of each individual glacier, and noted that the changes are spatially heterogeneous. Of all the glaciers, 32 % have speeded up, 24.5 % have slowed down, and the rest 43.5 % remained stable. The amplitude of glacier slowdown, as a result of glacier mass loss, is remarkably larger than that of speedup. At regional scales, we found that glacier surface velocity in winter has uniformly decreased in the western part of the Himalayas between 1999 and 2018, whilst increased in the eastern part; this contrasting difference may be associated with decadal changes in accumulation and/or melting under different climatic regimes. We also found that the overall trend of surface velocity exhibits seasonal variability: summer velocity changes are positively correlated with mass loss, whereas winter velocity changes show a negative correlation. Our study suggests that glacier velocity changes in the Himalayas are more spatially and temporally heterogeneous than previously thought, emphasising complex interactions between glacier dynamics and environmental forcing.


2020 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Jing Zhang ◽  
Li Jia ◽  
Massimo Menenti ◽  
Shaoting Ren

Monitoring glacier flow is vital to understand the response of mountain glaciers to environmental forcing in the context of global climate change. Seasonal and interannual variability of surface velocity in the temperate glaciers of the Parlung Zangbo Basin (PZB) has attracted significant attention. Detailed patterns in glacier surface velocity and its seasonal variability in the PZB are still uncertain, however. We utilized Landsat-8 (L8) OLI data to investigate in detail the variability of glacier velocity in the PZB by applying the normalized image cross-correlation method. On the basis of satellite images acquired from 2013 to 2020, we present a map of time-averaged glacier surface velocity and examined four typical glaciers (Yanong, Parlung No.4, Xueyougu, and Azha) in the PZB. Next, we explored the driving factors of surface velocity and of its variability. The results show that the glacier centerline velocity increased slightly in 2017–2020. The analysis of meteorological data at two weather stations on the outskirts of the glacier area provided some indications of increased precipitation during winter-spring. Such increase likely had an impact on ice mass accumulation in the up-stream portion of the glacier. The accumulated ice mass could have caused seasonal velocity changes in response to mass imbalance during 2017–2020. Besides, there was a clear winter-spring speedup of 40% in the upper glacier region, while a summer speedup occurred at the glacier tongue. The seasonal and interannual velocity variability was captured by the transverse velocity profiles in the four selected glaciers. The observed spatial pattern and seasonal variability in glacier surface velocity suggests that the winter-spring snow might be a driver of glacier flow in the central and upper portions of glaciers. Furthermore, the variations in glacier surface velocity are likely related to topographic setting and basal slip caused by the percolation of rainfall. The findings on glacier velocity suggest that the transfer of winter-spring accumulated ice triggered by mass conservation seems to be the main driver of changes in glacier velocity. The reasons that influence the seasonal surface velocity change need further investigation.


2019 ◽  
Vol 11 (10) ◽  
pp. 1151
Author(s):  
Teodor Nagy ◽  
Liss M. Andreassen ◽  
Robert A. Duller ◽  
Pablo J. Gonzalez

Satellite imagery represents a unique opportunity to quantify the spatial and temporal changes of glaciers world-wide. Glacier velocity has been measured from repeat satellite scenes for decades now, yet a range of satellite missions, feature tracking programs, and user approaches have made it a laborious task. To date, there has been no tool developed that would allow a user to obtain displacement maps of any specified glacier simply by establishing the key temporal, spatial and feature tracking parameters. This work presents the application and development of a unique, semi-automatic, open-source, flexible processing toolbox for the retrieval of displacement maps with a focus on obtaining glacier surface velocities. SenDiT combines the download, pre-processing, feature tracking, and postprocessing of the highest resolution Sentinel-2A and Sentinel-2B satellite images into a semi-automatic toolbox, leaving a user with a set of rasterized and georeferenced glacier flow magnitude and direction maps for their further analyses. The solution is freely available and is tailored so that non-glaciologists and people with limited geographic information system (GIS) knowledge can also benefit from it. The system can be used to provide both regional and global sets of ice velocities. The system was tested and applied on a range of glaciers in mainland Norway, Iceland, Greenland and New Zealand. It was also tested on areas of stable terrain in Libya and Australia, where sources of error involved in the feature tracking using Sentinel-2 imagery are thoroughly described and quantified.


2015 ◽  
Vol 40 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Lydia Sam ◽  
Anshuman Bhardwaj ◽  
Shaktiman Singh ◽  
Rajesh Kumar

Changes in ice velocity of a glacier regulate its mass balance and dynamics. The estimation of glacier flow velocity is therefore an important aspect of temporal glacier monitoring. The utilisation of conventional ground-based techniques for detecting glacier surface flow velocity in the rugged and alpine Himalayan terrain is extremely difficult. Remote sensing-based techniques can provide such observations on a regular basis for a large geographical area. Obtaining freely available high quality remote sensing data for the Himalayan regions is challenging. In the present work, we adopted a differential band composite approach, for the first time, in order to estimate glacier surface velocity for non-debris and supraglacial debris covered areas of a glacier, separately. We employed various bandwidths of the Landsat 8 data for velocity estimation using the COSI-Corr (co-registration of optically sensed images and correlation) tool. We performed the accuracy assessment with respect to field measurements for two glaciers in the Indian Himalaya. The panchromatic band worked best for non-debris parts of the glaciers while band 6 (SWIR – short wave infrared) performed best in case of debris cover. We correlated six temporal Landsat 8 scenes in order to ensure the performance of the proposed algorithm on monthly as well as yearly timescales. We identified sources of error and generated a final velocity map along with the flow lines. Over- and underestimates of the yearly glacier velocity were found to be more in the case of slow moving areas with annual displacements less than 5 m. Landsat 8 has great capabilities for such velocity estimation work for a large geographic extent because of its global coverage, improved spectral and radiometric resolutions, free availability and considerable revisit time.


2012 ◽  
Vol 58 (209) ◽  
pp. 569-580 ◽  
Author(s):  
Dirk Scherler ◽  
Manfred R. Strecker

AbstractDespite global warming and unlike their Himalayan neighbours, glaciers in the Karakoram mountains do not show signs of significant retreat. Here we report high velocity variations of Biafo Glacier, central Karakoram, which occurred between 2001 and 2009 and which indicate considerable dynamics in its flow behaviour. We have generated a dense time series of glacier surface velocities, based on cross-correlation of optical satellite images, which clearly shows seasonal and interannual velocity variations, reaching 50% in some places. The interannual velocity variations resemble the passing of a broad wave of high velocities, with peak velocities during 2005 and some diffusion down-glacier over a period of at least 4 years. High interannual velocity variations are also observed at other glaciers in the vicinity, suggesting a common cause, although these appear to partly comprise longer acceleration phases. Analysis of weather station data provides some indications of meteorological conditions that could have promoted sustained sliding events during this period, but this does not explain the wave-like nature of the acceleration at Biafo Glacier, and the regular, protracted velocity changes.


2016 ◽  
Vol 62 (234) ◽  
pp. 763-777 ◽  
Author(s):  
W. H. ARMSTRONG ◽  
R. S. ANDERSON ◽  
JEFFERY ALLEN ◽  
H. RAJARAM

ABSTRACTGlacier basal motion generates diurnal to multi-annual fluctuations in glacier velocity and mass flux. Understanding these fluctuations is important for prediction of future sea-level rise and for gaining insight into glacier physics and erosion. Here, we derive glacier velocity through cross-correlation of WorldView satellite imagery to document the evolution of ice surface velocity on Kennicott Glacier, Alaska, over the 2013 melt season. The summer speedup is spatially uniform over a ~12 km2 area, over which the spring velocity varies significantly. Velocity increases by 1.4-fold to tenfold across the study domain, with larger values where spring velocities are low. To investigate the cross-glacier distribution of basal motion required to explain the observed surface speedup, we employ a two-dimensional cross-sectional glacier flow model. We find the model is insensitive to the spatial distribution of basal slip because stress gradient ice coupling diffuses the surface expression of the basal velocity field. While the temporal evolution of the subglacial hydrologic system is critical for predicting a glacier's response to meltwater inputs, our work suggests that glacier and ice-sheet models do not require a detailed representation of subglacial hydrology to accurately capture the spatial pattern of glacier speedup.


2015 ◽  
Vol 61 (226) ◽  
pp. 387-399 ◽  
Author(s):  
Faye R. Wyatt ◽  
Martin J. Sharp

AbstractSupraglacial meltwater reaching a glacier bed can increase ice surface velocities via hydraulic jacking and enhanced basal sliding. However, the relationships between the structure of supraglacial drainage systems, sink-point distributions, glacier flow processes and the magnitude of interannual velocity variability are poorly understood. To explore the hypothesis that spatial variations in the rate and mechanisms of glacier flow are linked to variations in supraglacial drainage system structure and sink-point distribution across an ice cap, we mapped supraglacial drainage systems on Devon Ice Cap from Landsat-7 ETM+ imagery. Spatial patterns of surface velocity and interannual velocity variability were determined using gradient correlation applied to Landsat-7 ETM+ images. Velocity variability is greater in areas close to sink-point locations, presumably because hydrologically forced basal sliding and/or bed deformation are enhanced in such areas. The distribution and characteristics of supraglacial drainage systems may play an important role in determining the distribution of regions of basal sliding, highlighting the need for knowledge of the supraglacial drainage system structure and sink-point distribution to inform efforts to model the dynamic response of Arctic ice caps to future climate warming.


2020 ◽  
Author(s):  
Silvan Leinss ◽  
Shiyi Li ◽  
Philipp Bernhard ◽  
Othmar Frey

<p>The velocity of glaciers is commonly derived by offset tracking using pairwise cross correlation or feature matching of either optical or synthetic aperture radar (SAR) images.  SAR images, however, are inherently affected by noise-like radar speckle and require therefore much larger images patches for successful tracking compared to the patch size used with optical data. As a consequence, glacier velocity maps based on SAR offset tracking have a relatively low resolution compared to the nominal resolution of SAR sensors. Moreover, tracking may fail because small features on the glacier surface cannot be detected due to radar speckle. Although radar speckle can be reduced by applying spatial low-pass filters (e.g. 5x5 boxcar), the spatial smoothing reduces the image resolution roughly by an order of magnitude which strongly reduces the tracking precision. Furthermore, it blurs out small features on the glacier surface, and therefore tracking can also fail unless clear features like large crevasses are visible.</p><p>In order to create high resolution velocity maps from SAR images and to generate speckle-free radar images of glaciers, we present a new method that derives the glacier surface velocity field by correlating temporally averaged sub-stacks of a series of SAR images. The key feature of the method is to warp every pixel in each SAR image according to its temporally increasing offset with respect to a reference date. The offset is determined by the glacier velocity which is obtained by maximizing the cross-correlation between the averages of two sub-stacks. Currently, we need to assume that the surface velocity is constant during the acquisition period of the image series but this assumption can be relaxed to a certain extend.</p><p>As the method combines the information of multiple images, radar speckle are highly suppressed by temporal multi-looking, therefore the signal-to-noise ratio of the cross-correlation is significantly improved. We found that the method outperforms the pair-wise cross-correlation method for velocity estimation in terms of both the coverage and the resolution of the velocity field. At the same time, very high resolution radar images are obtained and reveal features that are otherwise hidden in radar speckle.</p><p>As the reference date, to which the sub-stacks are averaged, can be arbitrarily chosen a smooth flow animation of the glacier surface can be generated based on a limited number of SAR images. The presented method could build a basis for a new generation of tracking methods as the method is excellently suited to exploit the large number of emerging free and globally available high resolution SAR image time series.</p>


2021 ◽  
Author(s):  
Shakil A Romshoo ◽  
Khalid Omar Murtaza ◽  
Waheed Shah ◽  
Tawseef Ramzan ◽  
Ummer Ameen ◽  
...  

Abstract The Himalayan glaciers supply water to a large population in south Asia for various uses and ecosystem services. Therefore, regional monitoring of glacier melting and identifying the drivers thereof is important to understand and predict the future trends of cryospheric melting. Using multi-date satellite images from 2000-2020, we investigated the shrinkage, snout retreat, thickness changes, mass loss and velocity changes of 77 glaciers in the Drass basin, western Himalaya, India. The overall glacier cover has shrunk by 5.31±0.33 km2 during the period. Snout retreat varied between 30-430 m (mean 155±9.58 m). Debris-cover showed a significant influence on the glacier melting with the clean glaciers showing a higher loss of ~5% compared to the debris-covered glaciers (~2%). The glaciers on an average have shown thickness change and mass loss of -1.27±0.37 and -1.08±0.31 m w.e.a-1 respectively. Average glacier velocity has reduced from 21.35±3.3 m a-1 in 2000 to 16.68±1.9 m a-1 by 2020 due to the continuous melting and the consequent mass loss of the glaciers. Concentration of the greenhouse gases (GHGs), black carbon and other pollutants from vehicular traffic plying in the vicinity of the glaciers has significantly increased during the observation period. Increasing temperatures, result of the significant increase of the GHGs and pollutants in the atmosphere, drive the glacier melting in the study area. If the situation continues in the future, the glaciers may disappear altogether in the Himalaya leading to significant impact on the regional water supplies, hydrological processes, ecosystem services and transboundary sharing of waters.


1986 ◽  
Vol 8 ◽  
pp. 206-206 ◽  
Author(s):  
J. Jania ◽  
L. Kolondra ◽  
S. Rudowski

In the period from 1982 to 1984, the Silesian University Expeditions investigated the annual cycle of the Hans Glacier velocity and front fluctuations. They also analysed the factors influencing these processes (J.Jania, L.Kolondra, E. Bukowska-Jania 1983).Surrounding the Hans Glacier frontal zone, permanent tripods had been installed (by cementation in monolithic rocks) for the photo-theodolite, to establish three stereo-photogrammetric bases. While two of the three bases were used for surveying the fluctuations of the glacier front along the entire width (ca. 2.5 km), the remaining one was installed to record the velocity of the glacier by the time-parallactic method. Photogrammetric pictures were reiterated approximately every 10 days during August in 1982, 1983 and 1984. During the polar winters of 1982/83 and 1983/84, the oscillations of the glacier front were recorded at one base only. Pictures were taken once a month (also by moonlight). Using a Gornik-type seismograph, natural micro-tremors coming from the glacier were recorded continually, The seismograph works at the nearby Polish Polar Station, which operates a meteorological station.The application of permanent metal tripods with an auto-centering disc made it possible to take successive pictures at the same external orientation of the camera on one hand, while, on the other hand, improving the convergent photographs (a similar approach was reported by U. Voigt 1966). On the glacier surface, ground points of control were signalled with a Maltese cross. The investigators made use of natural reference points, i.e. some characteristic features of the glacier surface. Maximum errors of the photogrammetric survey were mxy = ±0.3 m, mz = ±0.1 m.The results of glacier tongue velocity measurements (ca 50 ma−1), as well as the results of measuring the fluctuations of the glacier front position enabled the rate of calving to be calculated. Thus, the calving velocity amounts to ca 100 ma−1 and the mass loss at the contact with sea water approaches ca 20% of the annual mass loss due to ablation.The calving speed and the velocity of the glacier undergo variations in different periods of the year and the maxima of the processes do not overlap. While the glacier velocity reaches its maximum value at the beginning of the summer season (July), maximum calving speed is recorded in autumn (September-October). However, there may appear a shift in the time at which these maxima occur. It depends on the meteorological conditions and the thermal state of the sea in the given year. The effect produced by the two “antagonistic” glacial processes is the change in position of the glacier front in the sea. Its maximum and minimum extension appears by the end of July and in October, respectively. The amplitude of the Hans Glacier front fluctuations, measured for the period of August, 1982 to August, 1983, amounted to 60 ma−1 on the centre line. The results of photogrammetric surveying by C. Lipert, from 1957 to 1959, have shown that the maximum changes in the extension of the glacier front amount to 250 ma−1. These fluctuations display regularities similar to those reported for the Columbia Glacier, Alaska by C.S. Brown, M.F. Meier and A. Post (1982).Analyses of micro-tremors coming from the glacier involved their variability in scale and frequency from one day to the next and throughout the year, as well as photogrammetric survey. Attempts were also made to find the englacial source of those micro-tremors. Source location was attempted in the summer of 1980, by using three geophones situated in the frontal part of the glacier. Thus, the majority of the micro-tremors owe their origin to the zone situated at a distance of 200 to 300 m from the front line and not to the ice cliff, as had been expected (A. Cichowicz, personal communication). It is worth noting that there exists an overlap of the annual distribution of the frequency of micro-tremor occurrence with the curve of glacier velocity variations. This enabled the investigator to determine the glacier dynamics by tremor recording.


Sign in / Sign up

Export Citation Format

Share Document