scholarly journals Conditioned Medium From M1 Macrophages Induces the Migration of Neural Stem Cells Through MCP-1/CCR2 and ERK Pathway

Author(s):  
Zhijian Cheng ◽  
Wen Zhu ◽  
Xijing He ◽  
Cao Kai ◽  
Jin Li ◽  
...  

Abstract After spinal cord injury, grafted neural stem cells (NSCs) can migrate toward injured area, where there are a large number of bone marrow derived macrophage. However, little is known about the effect of M1 macrophage from bone marrow on NSCs migration and the mechanism responsible for migratory responses of grafted NSCs in vitro and in vivo. Migration of NSCs were conducted by using the transwell chamber and SCI model. Conditioned medium from M1 macrophages (M1-CM) can attract NSCs migration in vitro. The number of migrated C-C chemokine receptor 2 (CCR2) -/- NSCs induced by M1-CM were significantly decreased compared with wild type (WT) NSCs (P<0.05). Furthermore, compared with M0 macrophages, the production of MCP-1 by M1 macrophages was significantly increased and M1-CM treated with anti-MCP-1 antibody to neutralize MCP-1 can lead to a significant reduction of NSCs migration (P<0.05). In addition, Western blot showed that ERK1/2 was dramatically activated following the stimuli of M1-CM and then ERK inhibitor can also inhibit M1-CM-mediated MSCs migration. Finally, CCR2 was needed for grafted NSCs migration toward injured area. Bone marrow derived M1 macrophage persisted within the epicenter of injured area and the expression of MCP-1 mRNA was significantly increased 7days after SCI (P<0.05). These results demonstrated the effect of M1 macrophages on NSCs migration and the important role of MCP-1/CCR2 and ERK signal pathway on M1-CM-induced NSCs migration.

2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Qingqi Meng ◽  
Zhiteng Chen ◽  
Qingyuan Gao ◽  
Liqiong Hu ◽  
Qilong Li ◽  
...  

Background. Neurodegenerative diseases, such as Alzheimer’s disease, and traumatic brain and spinal cord injury (SCI) are prevalent in clinical practice. Inhibition of hyperactive inflammation and proliferation of endogenous neural stem cells (NSCs) is a promising treatment strategy for SCI. Our previous studies demonstrated the beneficial effects of rosiglitazone (Rosi) on SCI, but its roles in inflammation inhibition and proliferation of NSCs are unknown. Methods. SCI in a rat model was established, and the effects of Rosi on motor functions were assessed. The effects of Rosi on NSC proliferation and the underlying mechanisms were explored in details. Results. We showed that Rosi ameliorated impairment of moto functions in SCI rats, inhibited inflammation, and promoted proliferation of NSCs in vivo. Rosi increased ATP production through enhancing glycolysis but not oxidative phosphorylation. Rosi reduced mitophagy by downregulating PTEN-induced putative kinase 1 (PINK1) transcription to promote NSC proliferation, which was effectively reversed by an overexpression of PINK1 in vitro. Through KEGG analysis and experimental validations, we discovered that Rosi reduced the expression of forkhead box protein O1 (FOXO1) which was a critical transcription factor of PINK1. Three FOXO1 consensus sequences (FCSs) were found in the first intron of the PINK1 gene, which could be potentially binding to FOXO1. The proximal FCS (chr 5: 156680169–156680185) from the translation start site exerted a more significant influence on PINK1 transcription than the other two FCSs. The overexpression of FOXO1 entirely relieved the inhibition of PINK1 transcription in the presence of Rosi. Conclusions. Besides inflammation inhibition, Rosi suppressed mitophagy by reducing FOXO1 to decrease the transcription of PINK1, which played a pivotal role in accelerating the NSC proliferation.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Paul Mueller ◽  
Lin Zhu ◽  
Illaria Giunzioni ◽  
Hagai Tavori ◽  
John M Stafford ◽  
...  

We previously showed that mice lacking macrophage LDL receptor-related protein 1 (LRP1) undergo accelerated lesion formation due to increased apoptosis, decreased efferocytosis, and enhanced macrophage transformation into the inflammatory M1 phenotype. In vitro, LRP1-deficient macrophages (MΦLRP1 -/- ) show enhanced plasticity with exaggerated polarization towards either the inflammatory M1- or the anti-inflammatory M2-phenotype depending on the stimulant (LPS or IL-4, respectively). During atherosclerosis regression, the M2:M1 macrophage ratio increases as lesion M1 macrophages egress and inflammation resolves. Thus, we hypothesize that atherosclerosis regression is accelerated in MΦLRP1 -/- mice via enhanced macrophage M2 polarization and CCR7-dependent M1 macrophage egress. ApoE-/- mice on high fat diet for 12 weeks were reconstituted with bone marrow from wildtype (WT) or MΦLRP1 -/- mice and then placed on chow diet for 8 weeks. In this model, apoE is reintroduced into circulation to correct the hyperlipidemia and induce regression of atherosclerotic lesions. A cohort of apoE -/- mice reconstituted with apoE -/- bone marrow served as baseline controls. Lesions in both WT and MΦLRP1 -/- mice regressed relative to controls (11% and 22%, respectively; p<0.05), but MΦLRP1 -/- lesions were 13% smaller than those of WT mice (p<0.05). LRP1 deletion increased M2 transformation of macrophages and a higher M2:M1 macrophage ratio (p<0.01) in the plaque. MΦLRP1 -/- lesions contained 36% fewer M1 macrophages compared to WT (p<0.01). In vivo studies of reverse cholesterol transport (RCT) revealed that MΦLRP1 -/- have a 1.4-fold higher RCT compared to WT mice (p<0.01). MΦLRP1 -/- lesions contained 2.5-fold more CCR7 + macrophages relative to WT lesions (p<0.01), and in our in vivo egress assay 4.6-fold more CCR7 + macrophages were found in mediastinal lymph nodes. In vitro , M1-differentiated MΦLRP1 -/- macrophages expressed 1.6-fold higher Ccr7 mRNA compared to WT controls (p<0.01). Thus, the absence of macrophage LRP1 accelerates atherosclerosis regression due to enhanced transformation of macrophages into an anti-inflammatory M2 phenotype, increased cholesterol efflux, and increased CCR7-driven egress of M1 macrophages from lesions.


2002 ◽  
Vol 11 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Daniel A. Castellanos ◽  
Pantelis Tsoulfas ◽  
Beata R. Frydel ◽  
Shyam Gajavelli ◽  
Jean-Claude Bes ◽  
...  

Although CNS axons have the capacity to regenerate after spinal cord injury when provided with a permissive substrate, the lack of appropriate synaptic target sites for regenerating fibers may limit restoration of spinal circuitry. Studies in our laboratory are focused on utilizing neural stem cells to provide new synaptic target sites for regenerating spinal axons following injury. As an initial step, rat neural precursor cells genetically engineered to overexpress the tyrosine kinase C (trkC) neurotrophin receptor were transplanted into the intact rat spinal cord to evaluate their survival and differentiation. Cells were either pretreated in vitro prior to transplantation with trkC ligand neurotrophin-3 (NT-3) to initiate differentiation or exposed to NT-3 in vivo following transplantation via gelfoam or Oxycel©. Both treatments enhanced survival of trkC-overexpressing stem cells to nearly 100%, in comparison with approximately 30–50% when either NT-3 or trkC was omitted. In addition, increased migration of trkC-overexpressing cells throughout the spinal gray matter was noted, particularly following in vivo NT-3 exposure. The combined trkC expression and NT-3 treatment appeared to reduce astrocytic differentiation of transplanted neural precursors. Decreased cavitation and increased β-tubulin fibers were noted in the vicinity of transplanted cells, although the majority of transplanted cells appeared to remain in an undifferentiated state. These findings suggest that genetically engineered neural stem cells in combination with neurotrophin treatment may be a useful addition to strategies for repair of spinal neurocircuitry following injury.


2007 ◽  
Vol 85 (2) ◽  
pp. 310-320 ◽  
Author(s):  
Zhaohui Zeng ◽  
Xiangpeng Yuan ◽  
Gentao Liu ◽  
Xianhao Zeng ◽  
Xiaorong Zeng ◽  
...  

2016 ◽  
Vol 202 (1-2) ◽  
pp. 85-101 ◽  
Author(s):  
Lauren N. Russell ◽  
Kyle J. Lampe

Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo.


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
И.Ю. Малышев

Цель исследования. Репрограммирование М1 фенотипа макрофагов с ингибированными факторами транскрипции М2 фенотипа STAT3, STAТ6 и SMAD и оценка их влияния на развитие карциномы Эрлиха (КЭ) in vitro и in vivo. Методика. Рост опухоли иницировали in vitro путем добавления клеток КЭ в среду культивирования RPMI-1640 и in vivo путем внутрибрюшинной инъекции клеток КЭ мышам. Результаты. Установлено, что M1макрофаги и in vitro, и in vivo оказывают выраженный противоопухолевый эффект, который превосходит антиопухолевые эффекты М1, M1, M1 макрофагов и цисплатина. Заключение. М1 макрофаги с ингибированными STAT3, STAT6 и/или SMAD3 эффективно ограничивают рост опухоли. Полученные данные обосновывают разработку новой технологии противоопухолевой клеточной терапии. Objective. Reprogramming of M1 macrophage phenotype with inhibited M2 phenotype transcription factors, such as STAT3, STAT6 and SMAD and assess their impact on the development of Ehrlich carcinoma (EC) in vitro and in vivo . Methods. Tumor growth in vitro was initiated by addition of EC cells in RPMI-1640 culture medium and in vivo by intraperitoneal of EC cell injection into mice. Results. It was found that M1 macrophages have a pronounced anti-tumor effect in vitro , and in vivo , which was greater than anti-tumor effects of M1, M1, M1 macrophages and cisplatin. Conclusion. M1 macrophages with inhibited STAT3, STAT6 and/or SMAD3 effectively restrict tumor growth. The findings justify the development of new anti-tumor cell therapy technology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii88-ii88
Author(s):  
Alison Mercer-Smith ◽  
Wulin Jiang ◽  
Alain Valdivia ◽  
Juli Bago ◽  
Scott Floyd ◽  
...  

Abstract INTRODUCTION Non-small cell lung cancer (NSCLC) is the most common cancer to form brain metastases. Radiation treatment is standard-of-care, but recurrence is still observed in 40% of patients. An adjuvant treatment is desperately needed to track down and kill tumor remnants after radiation. Tumoritropic neural stem cells (NSCs) that can home to and deliver a cytotoxic payload offer potential as such an adjuvant treatment. Here we show the transdifferentiation of human fibroblasts into tumor-homing induced neural stem cells (hiNSCs) that secrete the cytotoxic protein TRAIL (hiNSC-TRAIL) and explore the use of hiNSC-TRAIL to treat NSCLC brain metastases. METHODS To determine the migratory capacity of hiNSCs, hiNSCs were infused intracerebroventricularly (ICV) into mice bearing established bilateral NSCLC H460 brain tumors. hiNSC accumulation at tumor foci was monitored using bioluminescent imaging and post-mortem fluorescent analysis. To determine synergistic effects of radiation with TRAIL on NSCLC, we performed in vitro co-culture assays and isobologram analysis. In vivo, efficacy was determined by tracking the progression and survival of mice bearing intracranial H460 treated with hiNSC-TRAIL alone or in combination with 2 Gy radiation. RESULTS/CONCLUSION Following ICV infusion, hiNSCs persisted in the brain for &gt; 1 week and migrated from the ventricles to colocalize with bilateral tumor foci. In vitro, viability assays and isobologram analysis revealed the combination treatment of hiNSC-TRAIL and 2 Gy radiation induced synergistic killing (combination index=0.64). In vivo, hiNSC-TRAIL/radiation combination therapy reduced tumor volumes &gt; 90% compared to control-treated animals while radiation-only and hiNSC-TRAIL-only treated mice showed 21% and 52% reduced volumes, respectively. Dual-treatment extended survival 40%, increasing survival from a median of 20 days in controls to 28 days in the treatment group. These results suggest hiNSC-TRAIL can improve radiation therapy for NSCLC brain metastases and could potentially improve outcomes for patients suffering from this aggressive form of cancer.


Nephrology ◽  
2015 ◽  
Vol 20 (9) ◽  
pp. 591-600 ◽  
Author(s):  
Juan He ◽  
Yan Wang ◽  
Xingyan Lu ◽  
Bei Zhu ◽  
Xiaohua Pei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document