scholarly journals Roboustness of Hydrogen Bonding in the Construction of Supramolecular Architechures in Protonated Perchlorate Salts

Author(s):  
D. Sathya ◽  
N. Karthikeyan ◽  
R. Padmavathy ◽  
R. Jagan ◽  
K. Saminathan ◽  
...  

Abstract Five new multicomponent salts of perchloric acid with a series of substituted anilines and N-heterocyclic amines namely Diphenylaminium perchlorate (DPAPC) (1), 2, 5-dichloroanilinium perchlorate (25DAP) hydrate (2), 4-Methylanilinium perchlorate (4MAPC) (3), 4-diamino-6-methyl-1, 3, 5-triazin-1-ium hydrogen perchlorate (24DAMTHP) (4) and 8-hydroxyquinolinium hydrogen perchlorate (8HQP) (5) were prepared and structurally characterized. The entire complexes were subjected to FTIR and elemental analysis. A vast family of intermolecular contacts N-H…O, O-H…O, N-H…N and C-H…O were observed, which are key ingredient in the generation of privileged supramolecular self-assemblies appeared as one-dimensional chain, two-dimensional ladder and helix. Cambridge structural Database (CSD) analysis of 52 hits revealed the perchloric acid display higher propensity of ladder architectures. Molecular stability of the complexes were studied by quantum chemical calculations using DFT/B3LYP method with 6-31G(d,p) basis set. Further their relative charge distributions were identified using molecular electrostatic potential map. The use of Hirshfeld surfaces in combination with fingerprint plots was visualized in order to study the closer contacts within the molecule. The relative contribution of whole percentage of interactions associated is highlighted.

2019 ◽  
Vol 69 (12) ◽  
pp. 3451-3456
Author(s):  
Lucia Pintilie ◽  
Amalia Stefaniu ◽  
Catalina Negut ◽  
Constantin Tanase ◽  
Miron Teodor Caproiu

This paper presents experimental data regarding the synthesis and structural characterization by: 1H-NMR, 13C-NMR, IR spectral analysis, melting point and thin layer chromatography of the candesartan key intermediate: methyl 2-[(tert-butoxycarbonyl)amino]-3-nitrobenzoate. In addition, a computational study of predicted molecular parameters, vibrational wavenumbers, frontier molecular orbitals energy diagram, molecular electrostatic potential map and other electronic distributions maps using restricted hybrid HF-DFT SCF calculation has been performed for obtaining the most stable conformer. For the most Stable conformer has been made a series of DFT calculations using the B3LYP levels using the 6-31G * basis set.


Author(s):  
María G. Andino ◽  
Mariela I. Profeta ◽  
Jorge M. Romero ◽  
Nelly L. Jorge ◽  
Eduardo A. Castro

The 2,4-dichlorophenoxyacetic acid (2,4-D) is applied to and recovered from the leaf surfaces of garden bean and corn plants. This paper examines the theoretical study of the 2,4-D IR and UV spectra as well as the determination of its optimized molecular structure. Theoretical calculations are performed at the density functional theory (DFT) levels. The different structural and electronic effects determining the molecular stability of the conformers are discussed in a comparative fashion. The optimized geometry was calculated via the B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets and the FT-IR spectra was calculated by the density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers show good agreement with the experimental values. A detailed interpretation of the infrared spectra of 2,4-D is reported.


In this work, we report spectral, structural and computational studies on 1,3,3-trimethyl-2,6-diphenylpiperidin-4-one (TMP). The molecular structure of the title compound in the ground state has been investigated by DFT-B3LYP method with 6-311G (d,p) basis set. The optimized structural parameters of the title compound acquired from DFT method has been found in accord with the single crystal XRD values. Vibrational and Mulliken analysis, frontier molecular orbitals and molecular electrostatic potential of the title compound have also been calculated and discussed. The small energy gap (EHOMO-ELUMO) show that the charge transfer occurs within the molecule.


2018 ◽  
Vol 5 (2) ◽  
pp. 27 ◽  
Author(s):  
Tahar Abbaz ◽  
Amel Bendjeddou ◽  
Didier Villemin

Objective: Optimized molecular structures have been investigated by DFT/B3LYP method with 6-31G (d,p) basis set. Stability of Benzo and anthraquinodimethane derivatives 1-4, hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed by using natural bond orbital (NBO) analysis. Electronic structures were discussed and the relocation of the electron density was determined. Molecular electrostatic potential (MEP), local density functional descriptors has been studied. Nonlinear optical (NLO) properties were also investigated. In addition, frontier molecular orbitals analyses have been performed from the optimized geometries. An ionization potential (I), electron affinity (A), electrophilicity index (ω), chemical potential (µ), electronegativity (χ), hardness (η), and softness (S), have been investigated. All the above calculations are made by the method mentioned above.Methods: The most stable optimized geometries obtained from DFT/B3LYP method with 6-31G(d,p) basis set were investigated for the study of molecular structures, nonlinear properties, natural bond orbital (NBO), molecular electrostatic potential (MEP) and frontier molecular orbital of Benzo and anthraquinodimethane derivatives.Results: Reactive sites of electrophilic and nucleophilic attacks for the investigated molecule were predicted using MEP at the B3LYP/6-31G(d,p). Compound 4 possesses higher electronegativity value than all compounds so; it is the best electron acceptor; the more reactive sites for electrophilic attacks are shown in compounds 1 and 4, for nucleophilic attacks are indicated in compounds 2 and 3 and the more reactive sites in radical attacks are detected in compounds 2 and 4.Conclusions: Compound 1 is softest, best electron donor and more reactive than all compounds. The calculated first order hyperpolarizability was found much lesser than reported in literature for urea.


2019 ◽  
Vol 16 (9) ◽  
pp. 705-717
Author(s):  
Mehrnoosh Khaleghian ◽  
Fatemeh Azarakhshi

In the present research, B45H36N45 Born Nitride (9,9) nanotube (BNNT) and Al45H36N45 Aluminum nitride (9,9) nanotube (AlNNT) have been studied, both having the same length of 5 angstroms. The main reason for choosing boron nitride nanotubes is their interesting properties compared with carbon nanotubes. For example, resistance to oxidation at high temperatures, chemical and thermal stability higher rather than carbon nanotubes and conductivity in these nanotubes, unlike carbon nanotubes, does not depend on the type of nanotube chirality. The method used in this study is the density functional theory (DFT) at Becke3, Lee-Yang-Parr (B3LYP) method and 6-31G* basis set for all the calculations. At first, the samples were simulated and then the optimized structure was obtained using Gaussian 09 software. The structural parameters of each nanotube were determined in 5 layers. Frequency calculations in order to extract the thermodynamic parameters and natural bond orbital (NBO) calculations have been performed to evaluate the electron density and electrostatic environment of different layers, energy levels and related parameters, such as ionization energy and electronic energy, bond gap energy and the share of hybrid orbitals of different layers.


2007 ◽  
Vol 62 (12) ◽  
pp. 711-715 ◽  
Author(s):  
Ahmad Seif ◽  
Mahmoud Mirzaei ◽  
Mehran Aghaie ◽  
Asadollah Boshra

Density functional theory (DFT) calculations were performed to calculate the electric field gradient (EFG) tensors at the sites of aliminium (27Al) and nitrogen (14N) nuclei in an 1 nm of length (6,0) single-walled aliminium nitride nanotube (AlNNT) in three forms of the tubes, i. e. hydrogencapped, aliminium-terminated and nitrogen-terminated as representatives of zigzag AlNNTs. At first, each form was optimized at the level of the Becke3,Lee-Yang-Parr (B3LYP) method, 6-311G∗∗ basis set. After, the EFG tensors were calculated at the level of the B3LYP method, 6-311++G∗∗ and individual gauge for localized orbitals (IGLO-II and IGLO-III) types of basis sets in each of the three optimized forms and were converted to experimentally measurable nuclear quadrupole resonance (NQR) parameters, i. e. quadrupole coupling constant (qcc) and asymmetry parameter (ηQ). The evaluated NQR parameters revealed that the considered model of AlNNT can be divided into four equivalent layers with similar electrostatic properties.With the exception of Al-1, all of the three other Al layers have almost the same properties, however, N layers show significant differences in the magnitudes of the NQR parameters in the length of the nanotube. Furthermore, the evaluated NQR parameters of Al-1 in the Al-terminated form and N-1 in the N-terminated form revealed the different roles of Al (base agent) and of N (acid agent) in AlNNT. All the calculations were carried out using the GAUSSIAN 98 package program.


2021 ◽  
Vol 14 (8) ◽  
pp. 812
Author(s):  
Thammarat Aree

Depression, a global mental illness, is worsened due to the coronavirus disease 2019 (COVID-2019) pandemic. Tricyclic antidepressants (TCAs) are efficacious for the treatment of depression, even though they have more side effects. Cyclodextrins (CDs) are powerful encapsulating agents for improving molecular stability, water solubility, and lessening the undesired effects of drugs. Because the atomic-level understanding of the β-CD–TCA inclusion complexes remains elusive, we carried out a comprehensive structural study via single-crystal X-ray diffraction and density functional theory (DFT) full-geometry optimization. Here, we focus on two complexes lining on the opposite side of the β-CD–TCA stability spectrum based on binding constants (Kas) in solution, β-CD–protriptyline (PRT) 1—most stable and β-CD–maprotiline (MPL) and 2—least stable. X-ray crystallography unveiled that in the β-CD cavity, the PRT B-ring and MPL A-ring are aligned at a nearly perfect right angle against the O4 plane and primarily maintained in position by intermolecular C–H···π interactions. The increased rigidity of the tricyclic cores is arising from the PRT -CH=CH- bridge widens, and the MPL -CH2–CH2- flexure narrows the butterfly angles, facilitating the deepest and shallower insertions of PRT B-ring (1) and MPL A-ring (2) in the distorted round β-CD cavity for better complexation. This is indicated by the DFT-derived complex stabilization energies (ΔEstbs), although the complex stability orders based on Kas and ΔEstbs are different. The dispersion and the basis set superposition error (BSSE) corrections were considered to improve the DFT results. Plus, the distinctive 3D arrangements of 1 and 2 are discussed. This work provides the first crystallographic evidence of PRT and MPL stabilized in the β-CD cavity, suggesting the potential application of CDs for efficient drug delivery.


2020 ◽  
Vol 42 (5) ◽  
pp. 746-746
Author(s):  
Murat Saracoglu Murat Saracoglu ◽  
Zulbiye Kokbudak Zulbiye Kokbudak ◽  
M Izzettin Yilmazer and Fatma Kandemirli M Izzettin Yilmazer and Fatma Kandemirli

Pyrimidine derivatives have biological and pharmacological properties. Therefore, in this study we focused on the synthesis various Pyrimidine derivatives to make noteworthy contributions this class of heterocyclic compounds. In the present study, the new compounds (4-6) were obtained by the reactions of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H)-one (1), 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one (2) and 1-amino-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (3) with dimethyl acetylenedicarboxylate. The structures of these compounds were proved by elemental analysis, FT-IR, 1H and 13C-NMR spectra. In addition to, quantum chemical calculations were made to find molecular properties of the pyrimidin-1(2H)-ylaminofumarate derivatives (4-6) by using DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum chemical features such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, chemical softness, electronegativity etc. values for gas and solvent phase of neutral molecules were calculated and discussed.


Sign in / Sign up

Export Citation Format

Share Document