scholarly journals Classifying Grains Using Behaviour-Informed Machine Learning

Author(s):  
Sudip Laudari ◽  
Benjy Marks ◽  
Pierre Rognon

Abstract Sorting granular materials such as ores, coffee beans, cereals, gravels and pills is essential forapplications in mineral processing, agriculture and waste recycling. Existing sorting methods are based on the detection of contrast in grain properties including size, colour, density and chemical composition. However, many grain properties cannot be directly detected in-situ, which significantly impairs sorting efficacy. We show here that a simple neural network can infer contrast in a wide range of grain properties by detecting patterns in their observable kinematics. These properties include grain size, density, stiffness, friction, dissipation and adhesion. This method of classification based on behaviour can significantly widen the range of granular materials that can be sorted. It can similarly be applied to enhance the sorting of other particulate materials including cells and droplets in microfluidic devices.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2019 ◽  
Vol 11 (19) ◽  
pp. 2191 ◽  
Author(s):  
Encarni Medina-Lopez ◽  
Leonardo Ureña-Fuentes

The aim of this work is to obtain high-resolution values of sea surface salinity (SSS) and temperature (SST) in the global ocean by using raw satellite data (i.e., without any band data pre-processing or atmospheric correction). Sentinel-2 Level 1-C Top of Atmosphere (TOA) reflectance data is used to obtain accurate SSS and SST information. A deep neural network is built to link the band information with in situ data from different buoys, vessels, drifters, and other platforms around the world. The neural network used in this paper includes shortcuts, providing an improved performance compared with the equivalent feed-forward architecture. The in situ information used as input for the network has been obtained from the Copernicus Marine In situ Service. Sentinel-2 platform-centred band data has been processed using Google Earth Engine in areas of 100 m × 100 m. Accurate salinity values are estimated for the first time independently of temperature. Salinity results rely only on direct satellite observations, although it presented a clear dependency on temperature ranges. Results show the neural network has good interpolation and extrapolation capabilities. Test results present correlation coefficients of 82 % and 84 % for salinity and temperature, respectively. The most common error for both SST and SSS is 0.4 ∘ C and 0 . 4 PSU. The sensitivity analysis shows that outliers are present in areas where the number of observations is very low. The network is finally applied over a complete Sentinel-2 tile, presenting sensible patterns for river-sea interaction, as well as seasonal variations. The methodology presented here is relevant for detailed coastal and oceanographic applications, reducing the time for data pre-processing, and it is applicable to a wide range of satellites, as the information is directly obtained from TOA data.


This paper presents the structure, usage and assessment of a convolutional neural system-based methodology has been applied for the arrangement of various phenological phases of plants. Our CNN design can consequently characterize distinctive phenological phases of eleven sorts of plants. So as to assess the presentation and productivity of our profound learning-based methodology, an old-style AI approach dependent on physically removed highlights is additionally executed. Textural highlights dependent on GLCM highlights have been removed and joined arrangement of highlights are taken care of into an AI calculation. The arrangement pace of the methodology dependent on physically extricated highlights is contrasted with those of our CNN based methodology. Trial results demonstrate that CNN put together methodology is fundamentally powerful with respect to the eleven sorts of plants we investigated. There are a wide range of ways profound learning can be applied on a dataset relying upon the size of the dataset. There are many research headings that we are intending to take for arranging phenological stages. Future work may comprise of building our own CNN design without any preparation especially prepared for arranging phenological phases of plants, just as trying different things with other pre-prepared CNN models and making sense of an approach to recognize infections in crops.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Huang ◽  
Bin Zheng ◽  
Tong Cai ◽  
Xiaofeng Li ◽  
Jian Liu ◽  
...  

Abstract Metasurfaces, interacted with artificial intelligence, have now been motivating many contemporary research studies to revisit established fields, e.g., direction of arrival (DOA) estimation. Conventional DOA estimation techniques typically necessitate bulky-sized beam-scanning equipment for signal acquisition or complicated reconstruction algorithms for data postprocessing, making them ineffective for in-situ detection. In this article, we propose a machine-learning-enabled metasurface for DOA estimation. For certain incident signals, a tunable metasurface is controlled in sequence, generating a series of field intensities at the single receiving probe. The perceived data are subsequently processed by a pretrained random forest model to access the incident angle. As an illustrative example, we experimentally demonstrate a high-accuracy intelligent DOA estimation approach for a wide range of incident angles and achieve more than 95% accuracy with an error of less than 0.5 ° $0.5{\degree}$ . The reported strategy opens a feasible route for intelligent DOA detection in full space and wide band. Moreover, it will provide breakthrough inspiration for traditional applications incorporating time-saving and equipment-simplified majorization.


2020 ◽  
Author(s):  
Majid Bayati ◽  
Mohammad Danesh-Yazdi

<p>The spatiotemporal dynamics of salinity in hypersaline lakes is strongly dependent on the rate of water flow feeding the lake, evaporation rate, and the phenomena of precipitation and dissolution. Although in-situ observations are most reliable in quantifying water quality variables, the spatiotemporal distribution of such data are typically limited or cannot be readily extrapolated for long-term projections. Alternatively, remotely-sensed imagery has facilitated less expensive and stronger ability to estimate water quality over a wide range of spatiotemporal resolutions. This study introduces a machine learning model that leverages in-situ measurements and high-resolution satellite imagery to estimate the salinity concentration in water bodies. To this end, 123 points were sampled in April and July of 2019 across the Lake Urmia surface covering the wide range of salinity fluctuations. Among the artificial neural networks, ANFIS, and linear regression tools examined to determine the relationship between salinity and surface reflectance, artificial neural networks yielded the best accuracy evidenced by R<sup>2</sup> = 0.94 and RMSE = 6.8%. The results show that the seasonal change of salinity is linearly correlated with the volume of water feeding the lake, witnessing that dilution imposes a stronger control on the salinity than bed salt dissolution. The impact of disturbance in the lake circulation due to the causeway is also evident from the sharp changes of salinity around the bridge piers near spring when the mixing of fresh and hypersaline water from the southern and northern parts, respectively, takes place. The results of this study prove the promising potential of machine learning tools fed multi-spectral satellite information to map other water quality metrics than salinity as well.</p>


2020 ◽  
Author(s):  
Rene Orth ◽  
Sungmin Oh

<p>Soil moisture plays a key role in land-atmosphere interactions through its influence on the energy and water cycles. Furthermore, its spatiotemporal variations can affect the development and persistence of extreme weather events. Consequently, soil moisture information is required for a wide range of research and applications, such as agricultural monitoring, flood and drought prediction, climate projection, and carbon-cycle modeling. Despite its scientific and societal importance, observations of soil moisture are sparse, in particular across time and at large spatial scales. Only models and satellite retrievals can provide global soil moisture information. While the ability of land surface models to represent the complex land-atmosphere interplay is still limited, satellite-based soil moisture data are a valuable alternative. However, these products suffer from a scaling based on models, and can only capture the top few centimeters of the soil. </p><p>In this study, we aim to augment satellite-based soil moisture data using machine learning. For this purpose we integrate satellite soil moisture with multiple hydro-meteorological data streams to derive global gridded soil moisture using Long Short-Term Memory (LSTM) neural networks. These networks are trained using in-situ soil moisture measurements as target data. With the resulting self-learned relationships, the LSTMs can produce in-situ-like soil moisture globally. We further analyze the implications of using point-scale target data to infer large scale information. The new dataset is derived separately for the surface and the deeper soil, thereby extending beyond the range covered by the satellite-based products. The integration of many data streams and multiple soil moisture observations through a powerful synergistic technique offers the potential to yield high accuracy. This is tested through rigorous cross-validation of the derived dataset. Finally, the planned datasets will permit consistent long-term, large-scale analysis to enhance our understanding of the hydrology-biosphere-climate interplay, to better constrain models and to support hydrological hazards monitoring and climate projections.</p>


2021 ◽  
Vol 13 (5) ◽  
pp. 969
Author(s):  
Ka Lok Chan ◽  
Ehsan Khorsandi ◽  
Song Liu ◽  
Frank Baier ◽  
Pieter Valks

In this paper, we present the estimation of surface NO2 concentrations over Germany using a machine learning approach. TROPOMI satellite observations of tropospheric NO2 vertical column densities (VCDs) and several meteorological parameters are used to train the neural network model for the prediction of surface NO2 concentrations. The neural network model is validated against ground-based in situ air quality monitoring network measurements and regional chemical transport model (CTM) simulations. Neural network estimation of surface NO2 concentrations show good agreement with in situ monitor data with Pearson correlation coefficient (R) of 0.80. The results also show that the machine learning approach is performing better than regional CTM simulations in predicting surface NO2 concentrations. We also performed a sensitivity analysis for each input parameter of the neural network model. The validated neural network model is then used to estimate surface NO2 concentrations over Germany from 2018 to 2020. Estimated surface NO2 concentrations are used to investigate the spatio-temporal characteristics, such as seasonal and weekly variations of NO2 in Germany. The estimated surface NO2 concentrations provide comprehensive information of NO2 spatial distribution which is very useful for exposure estimation. We estimated the annual average NO2 exposure for 2018, 2019 and 2020 is 15.53, 15.24 and 13.27 µµg/m3, respectively. While the annual average NO2 concentration of 2018, 2019 and 2020 is only 12.79, 12.60 and 11.15 µµg/m3. In addition, we used the surface NO2 data set to investigate the impacts of the coronavirus disease 2019 (COVID-19) pandemic on ambient NO2 levels in Germany. In general, 10–30% lower surface NO2 concentrations are observed in 2020 compared to 2018 and 2019, indicating the significant impacts of a series of restriction measures to reduce the spread of the virus.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas Martynec ◽  
Christos Karapanagiotis ◽  
Sabine H. L. Klapp ◽  
Stefan Kowarik

AbstractMachine learning is playing an increasing role in the discovery of new materials and may also facilitate the search for optimum growth conditions for crystals and thin films. Here, we perform kinetic Monte-Carlo simulations of sub-monolayer growth. We consider a generic homoepitaxial growth scenario that covers a wide range of conditions with different diffusion barriers (0.4–0.55 eV) and lateral binding energies (0.1–0.4 eV). These simulations are used as a training data set for a convolutional neural network that can predict diffusion barriers and binding energies. Specifically, a single Monte-Carlo image of the morphology is sufficient to determine the energy barriers with an accuracy of approximately 10 meV and the neural network is tolerant to images with noise and lower than atomic-scale resolution. We believe this new machine learning method will be useful for fundamental studies of growth kinetics and growth optimization through better knowledge of microscopic parameters.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1107
Author(s):  
Zhuoying Jiang ◽  
Jiajie Hu ◽  
Matthew Tong ◽  
Anna C. Samia ◽  
Huichun (Judy) Zhang ◽  
...  

This paper describes an innovative machine learning (ML) model to predict the performance of different metal oxide photocatalysts on a wide range of contaminants. The molecular structures of metal oxide photocatalysts are encoded with a crystal graph convolution neural network (CGCNN). The structure of organic compounds is encoded via digital molecular fingerprints (MF). The encoded features of the photocatalysts and contaminants are input to an artificial neural network (ANN), named as CGCNN-MF-ANN model. The CGCNN-MF-ANN model has achieved a very good prediction of the photocatalytic degradation rate constants by different photocatalysts over a wide range of organic contaminants. The effects of the data training strategy on the ML model performance are compared. The effects of different factors on photocatalytic degradation performance are further evaluated by feature importance analyses. Examples are illustrated on the use of this novel ML model for optimal photocatalyst selection and for assessing other types of photocatalysts for different environmental applications.


2004 ◽  
Vol 21 ◽  
pp. 63-100 ◽  
Author(s):  
K. O. Stanley ◽  
R. Miikkulainen

Two major goals in machine learning are the discovery and improvement of solutions to complex problems. In this paper, we argue that complexification, i.e. the incremental elaboration of solutions through adding new structure, achieves both these goals. We demonstrate the power of complexification through the NeuroEvolution of Augmenting Topologies (NEAT) method, which evolves increasingly complex neural network architectures. NEAT is applied to an open-ended coevolutionary robot duel domain where robot controllers compete head to head. Because the robot duel domain supports a wide range of strategies, and because coevolution benefits from an escalating arms race, it serves as a suitable testbed for studying complexification. When compared to the evolution of networks with fixed structure, complexifying evolution discovers significantly more sophisticated strategies. The results suggest that in order to discover and improve complex solutions, evolution, and search in general, should be allowed to complexify as well as optimize.


Sign in / Sign up

Export Citation Format

Share Document