scholarly journals Investigating the Conditions of Automatic Assembly of Polyhedral Joints

Author(s):  
Mikhail Vladimirovich Vartanov ◽  
Zinina Inna Nikolaevna ◽  
Klimenko Irina Leontievna ◽  
Tran Dinh Van

Abstract Purpose – Providing the technological reliability of the robotic assembly of joints with RK-profile on the basis of adaptation devices and low-frequency oscillations. Design/methodology/approach – Ensuring the assembly conditions is achieved by the vibration device that provides oscillations relative to the two axes, perpendicular to the assembly direction and rotation about the assembly axis. Compensation of the linear error in the position of the parts is attained by an adaptive gripper with a flexible link. Findings – A mathematical model describing the assembly process of parts relative to the non-inertial coordinate system is developed. The technological modes of profile parts assembly are defined. Originality/value – The robotic assembly method of profile joints by the adaptation devices, namely a combination of elastic fixing of the installed profile part and the simultaneous rotation and vibration of the base part to improve the process reliability is developed. Experimental studies confirmed the adequacy of the created mathematical model. The patent for the assembly method of profile joints with a gap is received.

2021 ◽  
Vol 2131 (5) ◽  
pp. 052026
Author(s):  
M V Vartanov ◽  
T T Tran

Abstract Using various physical and technical effects in automatic assembly is a promising tendency to increase the technological reliability of the assembly process. The article presents a method for robotic assembly of cylindrical joints using the effect of rotational motion and low-frequency vibrations. The effect can be achieved by using low-frequency vibrations of the base part with the help of a vibrating device and the rotational movement of the installed part with the help of the rotational movement of the robot out-put link. The paper presented a mathematical model of the dynamics of the robotic assembly process of cylindrical joints. Experiments were set up and carried out to test the effectiveness of the proposed assembly method. The research results affirmed that with a rational technological mode of the robotic assembly process using the effect of rotation and low-frequency vibrations, the probability of jamming is completely eliminated and the assembly force is significantly reduced.


2020 ◽  
pp. 299-304
Author(s):  
M.V. Vartanov ◽  
Trung Ta Tran

The assembly method using the effect of rotational motion and vibration is considered. The presence of rotation allows to signifi cantly reducing the friction force in connection, which prevents the assembly process. The effect is achieved due to using the rotation of robot gripper and the vibrating device. A mathematical dynamics model of the robotic assembly process is presented


2018 ◽  
Vol 224 ◽  
pp. 01025 ◽  
Author(s):  
Nikolay Nesterov ◽  
Boris Vorontsov

A detailed analysis of the process of filling the mould for lost foam casting technology was made based on a mathematical model, that takes into account the emergence of low-frequency oscillations. The optimum range of technological parameters for a few specific details were discovered. The factors that may lead to the release of metal and to mould collapse were also identified.


2017 ◽  
Vol 37 (1) ◽  
pp. 130-134 ◽  
Author(s):  
Michael V. Vartanov ◽  
Leonarda V. Bojkova ◽  
Inna N. Zinina

Purpose The purpose of this paper is to define the conditions for a failsafe coupling of parts when using adaptation and low-frequency vibrations. A model enables us to determine the reaction at the contact points of parts and time-based contact conditions changes. Therefore, the conditions of jamming parts can be defined in the process of conjugation. Design/methodology/approach A mathematical model describing the trajectory of the part mass center in robotic assembly is created. An experimental equipment is also presented in the paper. Convergence of theoretical and experimental results that characterize the reliability of processes is estimated. Findings The mathematical model of the connection process dynamics is found in the form of Lagrange’s equations of the second kind. Originality/value Applying low-frequency vibration and the adaptive gripper is proposed to extend technological capabilities of robotic assembly.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


2021 ◽  
pp. 105444
Author(s):  
Chun-Chuan Chen ◽  
Antonella Macerollo ◽  
Hoon-Ming Heng ◽  
Ming-Kuei Lu ◽  
Chon-Haw Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document