scholarly journals Inhibitory Effects of LOXL2 Knockdown On Cellular Functions of Liver Cancer Stem Cells

Author(s):  
Na Li ◽  
Huan Gu ◽  
Liu Liu ◽  
Xiao Li Zhang ◽  
Qiu Luo Cheng ◽  
...  

Abstract Background and aim: Lysyl oxidase-like 2 (LOXL2) plays a role in tumor microenvironment formation and metastasis of hepatocellular carcinoma (HCC), which has a high mortality burden. Liver cancer stem cells (LCSCs) are related with the major malignant phenotypes of HCC. The function of LOXL2 in regulation of LCSCs remains unknown.Methods: CD133+HepG2 and CD133+Hep3B cells were sorted by fluorescence-activated cell sorting (FACS) from two human hepatoblastoma cell lines. Spheroid formation, apoptosis, cell cycle, as well as transwell assays were performed upon LOXL2 knock down in CD133+HepG2 and CD133+Hep3B cells. Protein and mRNA levels were quantified by Western blotting, Immunofluorescence and real-time PCR. Results: Knockdown of LOXL2 decreased spheroid formation, migration and invasion (p < 0.05), also induced apoptosis (p < 0.05) and cell cycle arrest (p < 0.05) in CD133+HepG2 and CD133+Hep3B cells. Knockdown of LOXL2 effectively inhibited expression of the anti-apoptosis proteins baculoviral IAP repeat-containing 3 (BIRC3) and murine double minute 2 (MDM2) (p < 0.01), as well as autophagy marker microtubule-associated protein 1 light chain 3 B (LC3) and autophagy gene ATG5 in CD133+HepG2 and CD133+Hep3B cells (p < 0.01). Conclusions: The results revealed that LOXL2 inhibition could reduce the proliferation and expansion of LCSCs, making LOXL2 inhibitors an attractive and novel therapeutic strategy of HCC.

2020 ◽  
Author(s):  
Sai Ma ◽  
Junping Cheng ◽  
Haiyan Wang ◽  
Ningling Ding ◽  
Feng Zhou ◽  
...  

Abstract Increasing evidence suggests that liver cancer stem cells (LCSCs) are the cellular determinants that promote tumor recurrence and metastases. Aberrantly expressed miRNAs were identified in LCSCs and found to play a significant role in modulating biological characteristics of LCSCs. In this study, we implemented miRNA microarrays in CD133+ LCSCs and found miR-101 expression was downregulated. Increasing miR-101 expression repressed the metastasis and tumorigenic potential in LCSCs. Further investigations showed that ANXA2 was a novel target of miR-101. And we revealed that ANXA2 plays a critical role in acceleration of cell cycle and enhancing the migration and invasion abilities of LCSCs. Elevated ANXA2 increased activation of extracellular signal-regulated kinase (ERK) which regulated SOX2 and cell cycle-related kinases. Moreover, ERK phosphorylation inhibited the expression of early growth response 1 (EGR1) which in turn restrained the transcription of miR-101. In vivo experiments, overexpression of miR-101 produced potent inhibitory effects on the growth of LCSCs xenograft tumors as well as ANXA2 knockdown. Taken together, our findings suggest a novel regulatory loop miR-101/ANXA2/EGR1 in LCSCs and may serve as potential therapeutic targets in liver cancer.


2016 ◽  
Vol 37 (2) ◽  
pp. 813-822 ◽  
Author(s):  
Joon Ho Lee ◽  
Wonhee Hur ◽  
Sung Woo Hong ◽  
Jung-Hee Kim ◽  
Sung Min Kim ◽  
...  

Author(s):  
Xiju Wang ◽  
Ronghua Wang ◽  
Shuya Bai ◽  
Si Xiong ◽  
Yawen Li ◽  
...  

Abstract Background Liver cancer stem cells (LCSCs) contribute to hepatocellular carcinoma (HCC) development, metastasis, and drug resistance. MSI2 and Notch1 signaling are involved in the maintenance of CSCs. However, it is unknown whether MSI2 and Notch1 are involved in the maintenance of CD44v6+ LCSCs. Therefore, we investigated the clinical significance and function of MSI2 and its relationship with Notch1 signaling in the maintenance of stemness properties in CD44v6+ LCSCs. Methods The expression of MSI2 and CD44v6 were detected by fresh specimens and a HCC tissue microarray. The tissue microarray containing 82 HCC samples was used to analyze the correlation between CD44v6 and MSI2. CD44v6+/− cells were isolated using microbeads sorting. We explored the roles of MSI2 and Notch1 signaling in CD44v6+ LCSCs by sphere formation assay, transwell assay, clone formation assay in vitro, and xenograft tumor models in vivo. A Notch RT2 PCR Array, Co-immunoprecipitation, and RNA-immunoprecipitation were used to further investigate the molecular mechanism of MSI2 in activating Notch1 signaling. Results Here, we found MSI2 expression was positively correlated with high CD44v6 expression in HCC tissues, and further correlated with tumor differentiation. CD44v6+ cells isolated from HCC cell lines exhibited increased self-renewal, proliferation, migration and invasion, resistance to Sorafenib and tumorigenic capacity. Both MSI2 and Notch1 signaling were elevated in sorted CD44v6+ cells than CD44v6- cells and played essential roles in the maintenance of stemness of CD44v6+ LCSCs. Mechanically, MSI2 directly bound to Lunatic fringe (LFNG) mRNA and protein, resulting in Notch1 activation. Conclusions Our results demonstrated that MSI2 maintained the stemness of CD44v6+ LCSCs by activating Notch1 signaling through the interaction with LFNG, which could be a potential molecular target for stem cell-targeted therapy for liver cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wang Yin ◽  
Dongxi Xiang ◽  
Tao Wang ◽  
Yumei Zhang ◽  
Cuong V. Pham ◽  
...  

AbstractTwo ATP-binding cassette transporters, ABCB1/MDR1 and ABCG2/BCRP, are considered the most critical determinants for chemoresistance in hepatocellular carcinoma. However, their roles in the chemoresistance in liver cancer stem cells remain elusive. Here we explored the role of inhibition of MDR1 or ABCG2 in sensitizing liver cancer stem cells to doxorubicin, the most frequently used chemotherapeutic agent in treating liver cancer. We show that the inhibition of MDR1 or ABCG2 in Huh7 and PLC/PRF/5 cells using either pharmacological inhibitors or RNAi resulted in the elevated level of intracellular concentration of doxorubicin and the accompanied increased apoptosis as determined by confocal microscopy, high-performance liquid chromatography, flow cytometry, and annexin V assay. Notably, the inhibition of MDR1 or ABCG2 led to the reversal of the chemoresistance, as evident from the enhanced death of the chemoresistant liver cancer stem cells in tumorsphere-forming assays. Thus, the elevation of effective intracellular concentration of doxorubicin via the inhibition of MDR1 or ABCG2 represents a promising future strategy that transforms doxorubicin from a traditional chemotherapy agent into a robust killer of liver cancer stem cells for patients undergoing transarterial chemoembolization.


Tumor Biology ◽  
2015 ◽  
Vol 37 (6) ◽  
pp. 8047-8055 ◽  
Author(s):  
Beibei Zhai ◽  
Xiaofeng Zhang ◽  
Bin Sun ◽  
Lu Cao ◽  
Linlin Zhao ◽  
...  

Author(s):  
Izabela Zarębska ◽  
Arkadiusz Gzil ◽  
Justyna Durślewicz ◽  
Damian Jaworski ◽  
Paulina Antosik ◽  
...  

2015 ◽  
Vol 10 (2) ◽  
pp. 455 ◽  
Author(s):  
Jian-Bo Zhou ◽  
Gang Peng ◽  
Yu-Cheng Jia ◽  
Jun Li ◽  
Jia Wang ◽  
...  

<p>The present study demonstrates the effects of triptolide, one of the constituents from Tripterygium wilfordii, on the self‑renewal capacity of human hepatocellular carcinoma. The investigation revealed that triptolide markedly prevented the proliferation of liver cancer stem cells (LCSCs). For the LCSCs the minimum inhibitory concentration of triptolide was 0.6 μM. There was a significant and obvious decrease in the capacity of LCSCs to form self-sphere. Furthermore, triptolide reduced the sphere-forming capacity of LCSCs along with inhibition of β‑catenin expression. However, the exposure of triptolide-treated cells to lithium chloride, an activator the Wnt/β-catenin signaling pathway, reversed the triptolide-induced inhibition of β-catenin expression and inhibited the self-renewal capacity. Therefore, triptolide effectively eradicates LCSCs through the inhibition of β-catenin protein and may act as a novel agent for the treatment of hepatocellular carcinoma.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document