scholarly journals Classifying Oscillatory Brain Activity Associated With Indian Rasas Using Network Metrics

Author(s):  
Pankaj Pandey ◽  
Richa Tripathi ◽  
Krishna Prasad Miyapuram

Abstract Neural oscillations are the rich source to understand cognition, perception, and emotions. Decades of research on brain oscillations have primarily discussed neural signatures for the western classification of emotions. Despite this, the Indian ancient treatise on emotions popularly known as Rasas has remained unexplored. In this study, we collected Electroencephalography (EEG) encodings while participants watched nine emotional movie clips corresponding to nine Rasas. The key objective of this study is to identify the brain waves that could distinguish between Rasas. Therefore, we decompose the EEG signals into five primary frequency bands comprising delta (1-4 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz). We construct the functional networks from EEG time-series data and subsequently utilize the fourteen graph-theoretical measures to compute the features. Random Forest models are trained on the extracted features, and we present our findings based on classifier predictions. We observe slow (delta) and fast brain waves (beta and gamma) exhibited the maximum discriminating features between Rasas, whereas alpha and theta bands showed fewer distinguishable pairs. Out of nine Rasas, Sringaram, Bibhatsam, and Bhayanakam displayed the most distinguishing characteristics from other Rasas. Interestingly, our results are consistent with the previous studies, which highlight the significant role of higher frequency oscillations for the classification of emotions. Our finding on the alpha band is consistent with the previous study, which reports the maximum similarity in brain networks across emotions in the alpha band. This research contributes to the pioneering work on Indian Rasas utilizing brain responses.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractAutomated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time–frequency and time–space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.


2021 ◽  
Vol 352 ◽  
pp. 109080
Author(s):  
Joram van Driel ◽  
Christian N.L. Olivers ◽  
Johannes J. Fahrenfort

1995 ◽  
Vol 115 (3) ◽  
pp. 354-360 ◽  
Author(s):  
Shigeaki Fukuda ◽  
Toshihisa Kosaka ◽  
Sigeru Omatsu

Author(s):  
Elangovan Ramanujam ◽  
S. Padmavathi

Innovations and applicability of time series data mining techniques have significantly increased the researchers' interest in the problem of time series classification. Several algorithms have been proposed for this purpose categorized under shapelet, interval, motif, and whole series-based techniques. Among this, the bag-of-words technique, an extensive application of the text mining approach, performs well due to its simplicity and effectiveness. To extend the efficiency of the bag-of-words technique, this paper proposes a discriminate supervised weighted scheme to identify the characteristic and representative pattern of a class for efficient classification. This paper uses a modified weighted matrix that discriminates the representative and non-representative pattern which enables the interpretability in classification. Experimentation has been carried out to compare the performance of the proposed technique with state-of-the-art techniques in terms of accuracy and statistical significance.


Author(s):  
Tobias Lampprecht ◽  
David Salb ◽  
Marek Mauser ◽  
Huub van de Wetering ◽  
Michael Burch ◽  
...  

Formula One races provide a wealth of data worth investigating. Although the time-varying data has a clear structure, it is pretty challenging to analyze it for further properties. Here the focus is on a visual classification for events, drivers, as well as time periods. As a first step, the Formula One data is visually encoded based on a line plot visual metaphor reflecting the dynamic lap times, and finally, a classification of the races based on the visual outcomes gained from these line plots is presented. The visualization tool is web-based and provides several interactively linked views on the data; however, it starts with a calendar-based overview representation. To illustrate the usefulness of the approach, the provided Formula One data from several years is visually explored while the races took place in different locations. The chapter discusses algorithmic, visual, and perceptual limitations that might occur during the visual classification of time-series data such as Formula One races.


2020 ◽  
Vol 497 (4) ◽  
pp. 4843-4856 ◽  
Author(s):  
James S Kuszlewicz ◽  
Saskia Hekker ◽  
Keaton J Bell

ABSTRACT Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their individual oscillation modes. We utilize data from the Kepler mission to develop a tool to classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS, and for the future PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars being observed and the shorter observing duration of the data. We propose a new method, Clumpiness, based upon a supervised classification scheme that uses ‘summary statistics’ of the time series, combined with distance information from the Gaia mission to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy of $\sim 91{{\ \rm per\ cent}}$ for the full 4 yr of Kepler data, for those stars that are either only hydrogen-shell burning or also helium-core burning. We also applied the method to shorter Kepler data sets, mimicking CoRoT, K2, and TESS achieving an accuracy $\gt 91{{\ \rm per\ cent}}$ even for the 27 d time series. This work paves the way towards fast, reliable classification of vast amounts of relatively short-time-span data with a few, well-engineered features.


Sign in / Sign up

Export Citation Format

Share Document