scholarly journals Combined Treatment of Graft Versus Host Disease Using Donor Regulatory T Cells and Ruxolitinib.

Author(s):  
Alfonso Rodríguez-Gil ◽  
Virginia Escamilla-Gómez ◽  
Melanie Nufer ◽  
Félix Andújar-Sánchez ◽  
Teresa Lopes-Ramos ◽  
...  

Abstract Donor derived regulatory T lymphocytes and the JAK1/2 kinase inhibitor ruxolitinib are currently being evaluated as therapeutic options in the treatment of Chronic Graft versus Host Disease (cGvHD).In this work, we aimed to determine if the combined use of both agents can exert a synergistic effect in the treatment of cGvHD. For this purpose, we studied the effect of this combination both in vitro and in a progressive onset acute to chronic GvHD mouse model. Our results show that ruxolitinib favors the ratio of thymic regulatory T cells to conventional T cells in culture, without affecting the suppressive capacity of these Treg. The combination of ruxolitinib with Treg showed a higher efficacy as compared to each single treatment alone in our GvHD mouse model in terms of GvHD incidence, severity and survival without hampering Graft versus Leukemia effect. This beneficial effect correlated with the detection in the bone marrow of recipient mice of the infused donor allogeneic Treg after the adoptive transfer.

2011 ◽  
Vol 208 (12) ◽  
pp. 2489-2496 ◽  
Author(s):  
Uri Sela ◽  
Peter Olds ◽  
Andrew Park ◽  
Sarah J. Schlesinger ◽  
Ralph M. Steinman

Foxp3+ regulatory T cells (T reg cells) effectively suppress immunity, but it is not determined if antigen-induced T reg cells (iT reg cells) are able to persist under conditions of inflammation and to stably express the transcription factor Foxp3. We used spleen cells to stimulate the mixed leukocyte reaction (MLR) in the presence of transforming growth factor β (TGF-β) and retinoic acid. We found that the CD11chigh dendritic cell fraction was the most potent at inducing high numbers of alloreactive Foxp3+ cells. The induced CD4+CD25+Foxp3+ cells appeared after extensive proliferation. When purified from the MLR, iT reg cells suppressed both primary and secondary MLR in vitro in an antigen-specific manner. After transfer into allogeneic mice, iT reg cells persisted for 6 mo and prevented graft versus host disease (GVHD) caused by co-transferred CD45RBhi T cells. Similar findings were made when iT reg cells were transferred after onset of GVHD. The CNS2 intronic sequence of the Foxp3 gene in the persisting iT reg cells was as demethylated as the corresponding sequence of naturally occurring T reg cells. These results indicate that induced Foxp3+ T reg cells, after proliferating and differentiating into antigen-specific suppressive T cells, can persist for long periods while suppressing a powerful inflammatory disease.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1726-1734 ◽  
Author(s):  
Melanie C. Ruzek ◽  
James S. Waire ◽  
Deborah Hopkins ◽  
Gina LaCorcia ◽  
Jennifer Sullivan ◽  
...  

Abstract Antithymocyte/antilymphocyte globulins are polyclonal antihuman T-cell antibodies used clinically to treat acute transplant rejection. These reagents deplete T cells, but a rabbit antihuman thymocyte globulin has also been shown to induce regulatory T cells in vitro. To examine whether antithymocyte globulin–induced regulatory cells might be functional in vivo, we generated a corresponding rabbit antimurine thymocyte globulin (mATG) and tested its ability to induce regulatory cells in vitro and whether those cells can inhibit acute graft-versus-host disease (GVHD) in vivo upon adoptive transfer. In vitro, mATG induces a population of CD4+CD25+ T cells that express several cell surface molecules representative of regulatory T cells. These cells do not express Foxp3 at either the protein or mRNA level, but do show suppressive function both in vitro and in vivo when adoptively transferred into a model of GVHD. These results demonstrate that in a murine system, antithymocyte globulin induces cells with suppressive activity that also function in vivo to protect against acute GVHD. Thus, in both murine and human systems, antithymocyte globulins not only deplete T cells, but also appear to generate regulatory cells. The in vitro generation of regulatory cells by anti-thymocyte globulins could provide ad-ditional therapeutic modalities for immune-mediated disease.


Blood ◽  
2007 ◽  
Vol 110 (10) ◽  
pp. 3804-3813 ◽  
Author(s):  
Xiao Chen ◽  
Sanja Vodanovic-Jankovic ◽  
Bryon Johnson ◽  
Melissa Keller ◽  
Richard Komorowski ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains the major complication after allogeneic bone marrow transplantation (BMT). The process whereby acute GVHD mediated by alloreactive donor T cells transitions into chronic GVHD, which is characterized by prominent features of auto-immunity, has long been unresolved. In this study, we demonstrate that GVHD-associated autoimmunity and, by extension, chronic GVHD is attributable to the progressive loss of CD4+CD25+Foxp3+ regulatory T cells during the course of acute GVHD. This leads to the expansion of donor-derived CD4+ T cells with TH1 and TH17 cytokine phenotypes that release proinflammatory cytokines and cause autoimmune-mediated pathological damage. These T cells are present early after transplantation, indicating that the pathophysiological events that lead to chronic GVHD are set in motion during the acute phase of GVHD. We conclude that the absence of CD4+CD25+ regulatory T cells coupled with unregulated TH1 and TH17 cells leads to the development of autoimmunity and that donor-derived TH1 and TH17 cells serve as the nexus between acute and chronic GVHD.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2987-2987
Author(s):  
Tina J Boeld ◽  
Kristina Doser ◽  
Corinna Lang-Schwarz ◽  
Elisabeth Huber ◽  
Reinhard Andreesen ◽  
...  

Abstract Abstract 2987 Acute graft-versus-host disease (GVHD) is a frequent complication after allogeneic bone marrow transplantation (BMT). We previously showed that the adoptive transfer of donor-type CD4+CD25+ regulatory T cells (Treg) at the time of BMT prevents acute GVHD in murine models. However, the therapeutic potential of donor-derived Treg cells for the treatment of established acute GVHD has not yet been examined in detail. In analogy to potential clinical applications we now tested the capacity of in vitro expanded Treg cells to ameliorate acute GVHD after haploidentical BMT (BALB/c→CB6F1). CD4+CD25highCD62L+ Treg cells were purified by FACS and stimulated polyclonally using anti-CD3/CD28-coated beads. Cells expanded on average 130±19-fold (n=7) within 2 wks and maintained high levels of FoxP3 expression (96, 8±0, 8% FoxP3+ cells; n=7) as well as potent immunosuppressive activity in vitro. For the induction of acute GVHD CB6F1 recipients were lethally irradiated and transplanted with 2.5×106 BM cells in combination with 5×106 splenocytes. All animals developed severe GVHD by d11, as revealed by an increase of the GVHD severity score (2.3±0.4 in GVHD animals vs 0±0 in BM controls, p<0.001, n=1–11) and by histological analyses of the gut (score: 7.8±0.4 for the GVHD group vs 0.2±0.2 for BM controls, p =0.046, n=3). When animals with acute GVHD were treated with 5×106 expanded CD4+CD25highCD62L+ Treg cells on d11 after BMT, they initially developed progressive GVHD comparable to non-treated GVHD animals, as indicated by weight loss and an increase of the GVHD score. However from d44 post BMT onwards, Treg-treated GVHD animals regained body weight (d44: 75±3% vs 67±2% of initial weight; p <0.05; n=9–10) and their clinical GVHD score (d44: 6±0 vs 4.3±0.4; p <0.05; n=9–10) decreased. While all non-treated GVHD animals succumbed to disease by d67 after transplantation, 50% of Treg-treated GVHD animals survived for at least 100d (p =0, 002; n=16–21). As immune reconstitution and in particular reconstitution of the lymphocyte compartment is impaired in animals with GVHD, we analyzed the effect of Treg therapy on the reconstitution of the lymphoid and myeloid compartment. At d21 after BMT spleen and BM of non-treated as well as Treg-treated GVHD animals were completely lymphopenic as compared to control mice and both organs contained exceptionally high numbers of granulocytes. Unlike non-treated GVHD animals, however, Treg-treated recipients by d60 showed a recovery of the lymphocyte compartment in spleen (10±2.6×106 T cells and 23.5±12.5×106 B cells in Treg-treated vs 3.0±0.6×106 T cells and 1.5±0.4×106 B cells in non-treated GVHD animals vs 26.25±2.6×106 T cells and 63.9±9.1×106 B cells in BM controls) and BM (0.7±0.1×106 T cells and 8.6±4×106 B cells in Treg-treated vs 0.3±0.01×106 T cells and 0.7±0.4 ×106 B cells in non-treated GVHD animals vs 0.4±0.03×106 T cells and 11.2±0.6×106 B cells in BM controls), while the number of granulocytes decreased constantly. Successful treatment with Treg cells was finally accompanied by a reconstitution of the lymphatic system comparable to control mice. Furthermore, successfully treated mice showed only mild histological signs of gut GVHD at d100 that was significantly lower then those in non-treated GVHD animals with end-stage disease (score: 4.2±1 vs 9.9±1.5 in treated vs non-treated animals, p =0.006, n=4–6). Taken together, these results indicate that in vitro expanded natural Treg cells may not only be effective for the prevention, but also for the treatment of acute GVHD after allogeneic BMT. Disclosures: No relevant conflicts of interest to declare.


HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 721-722
Author(s):  
T.-J. Chiou ◽  
Y.-C. Ke ◽  
C.-T. Kuo ◽  
H.-Y. Huang ◽  
S.-C. Lu ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3555-3555
Author(s):  
Dongchang Zhao ◽  
Yu-Hong Chen ◽  
James Young ◽  
Elizabeth Shen ◽  
Tangsheng Yi ◽  
...  

Abstract Abstract 3555 Poster Board III-492 Chronic graft versus host disease (GVHD) is considered an autoimmune-like disease mediated by donor CD4+ T cells, but the role and origin of the autoreactive T cells remain controversial. Here, we report that, in a chronic GVHD model of MHC-matched DBA/2 (H-2d) donor to BALB/c (H-2d) host, donor spleen cells induced autoimmune-like chronic GVHD in thymectomized allogeneic BALB/c but not in syngeneic DBA/2 recipients. The spleen cells from the former but not the latter recipients induced autoimmune-like disease in the secondary DBA/2 recipients, indicating that autoreactive donor CD4+ T cells from transplants are expanded and contribute to chronic GVHD pathogenesis. In addition, we found that both auto- and alloreactive donor CD4+ T cells generated from primary chronic GVHD recipients via serial in vivo and in vitro expansion proliferated to donor and host DC stimulation and both induced autoimmune-like disease in syngeneic and allogeneic recipients. Furthermore, the clonal expansion and TCR spreading of the autoreactive T cells in chronic GVHD recipients were following the alloreactive T cells, as revealed by TCR-spectrum typing and skewing of TCR-CDR3 length; No dual TCR was expressed by the donor-type T cells with both allo- and autoreactivity; and the autoreactive hybridoma T clones proliferated to stimulation by both syngeneic and allogeneic DCs. Taken together, these results demonstrate that donor CD4+ T cells that possess both allo- and autoreactivity in transplants are expanded in recipients and contribute to chronic GVHD pathogenesis, and the allo- and autoreactivity of the donor T cells can be mediated by a single TCR. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (23) ◽  
pp. 4859-4869 ◽  
Author(s):  
Jean-Philippe Bastien ◽  
Gorazd Krosl ◽  
Cynthia Therien ◽  
Marissa Rashkovan ◽  
Christian Scotto ◽  
...  

Abstract Even the most potent immunosuppressive drugs often fail to control graft-versus-host disease (GVHD), the most frequent and deleterious posttransplantation complication. We previously reported that photodepletion using dibromorhodamine (TH9402) eliminates T cells from healthy donors activated against major histocompatibility complex–incompatible cells and spares resting T cells. In the present study, we identified photodepletion conditions selectively eradicating endogenous proliferating T cells from chronic GVHD patients, with the concomittant sparing and expansion of CD4+CD25+ forkhead box protein 3–positive T cells. The regulatory T-cell (Treg) nature and function of these photodepletion-resistant cells was demonstrated in coculture and depletion/repletion experiments. The mechanism by which Tregs escape photodepletion involves active P-glycoprotein–mediated drug efflux. This Treg-inhibitory activity is attributable to interleukin-10 secretion, requires cell-cell contact, and implies binding with cytotoxic T-lymphocyte antigen 4 (CTLA-4). Preventing CTLA-4 ligation abrogated the in vitro generation of Tregs, thus identifying CTLA-4–mediated cell-cell contact as a crucial priming event for Treg function. Moreover, the frequency of circulating Tregs increased in chronic GVHD patients treated with TH9402 photodepleted cells. In conclusion, these results identify a novel approach to both preserve and expand Tregs while selectively eliminating CD4+ effector T cells. They also uncover effector pathways that could be used advantageously for the treatment of patients with refractory GVHD.


2021 ◽  
Vol 135 (3) ◽  
pp. 495-513
Author(s):  
Peter Cuthbertson ◽  
Nicholas J. Geraghty ◽  
Sam R. Adhikary ◽  
Sienna Casolin ◽  
Debbie Watson ◽  
...  

Abstract Graft-versus-host disease (GVHD) is a severe inflammatory response arising from allogeneic haematopoietic stem cell transplantation. Previous studies revealed that antagonism of the P2X7 receptor with Brilliant Blue G (BBG) reduced liver GVHD but did not alter clinical GVHD in a humanised mouse model. Therefore, the present study aimed to trial a modified injection regime using more frequent dosing of BBG to improve outcomes in this model of GVHD. NOD-scid IL2Rγnull (NSG) mice were injected intraperitoneally (i.p.) with 10 × 106 human peripheral blood mononuclear cells (hPBMCs) (day 0), then daily with BBG (50 mg/kg) or saline (days 0–10). BBG significantly reduced clinical score, mortality and histological GVHD compared with saline treatment (endpoint). BBG significantly increased proportions of human regulatory T cells (Tregs) and human B cells and reduced serum human interferon-γ compared with saline treatment prior to development of clinical GVHD (day 21). To confirm the therapeutic benefit of P2X7 antagonism, NSG mice were injected i.p. with 10 × 106 hPBMCs (day 0), then daily with pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) (300 mg/kg) or saline (days 0–10). PPADS increased human Treg proportions compared with saline treatment (day 21), but potential clinical benefits were confounded by increased weight loss with this antagonist. To investigate the role of P2X7 antagonism on Treg survival, hPBMCs were cultured in reduced serum conditions to promote cell death. BBG increased proportions of Tregs (and B cells) compared with saline under these conditions. In conclusion, P2X7 antagonism reduces clinical and histological GVHD in a humanised mouse model corresponding to an increase in human Tregs.


Blood ◽  
2009 ◽  
Vol 114 (6) ◽  
pp. 1263-1269 ◽  
Author(s):  
Christian Becker ◽  
Christian Taube ◽  
Tobias Bopp ◽  
Christoph Becker ◽  
Kai Michel ◽  
...  

AbstractNaturally occurring CD4+CD25+ regulatory T cells (Tregs) represent a unique T-cell lineage that is endowed with the ability to actively suppress immune responses. Therefore, approaches to modulate Treg function in vivo could provide ways to enhance or reduce immune responses and lead to novel therapies. Here we show that the CD4 binding human immunodeficiency virus-1 envelope glycoprotein gp120 is a useful and potent tool for functional activation of human Tregs in vitro and in vivo. Gp120 activates human Tregs by binding and signaling through CD4. Upon stimulation with gp120, human Tregs accumulate cyclic adenosine monophosphate (cAMP) in their cytosol. Inhibition of endogeneous cAMP synthesis prevents gp120-mediated Treg activation. Employing a xenogeneic graft versus host disease model that has been shown to be applicable for the functional analysis of human Tregs in vivo, we further show that a single dose of gp120 is sufficient to prevent lethal graft versus host disease and that the tolerizing effect of gp120 is strictly dependent on the presence of human Tregs and their up-regulation of cAMP upon gp120-mediated activation. Our findings demonstrate that stimulation via the CD4 receptor represents a T-cell receptor–independent Treg activating pathway with potential to induce immunologic tolerance in vivo.


Sign in / Sign up

Export Citation Format

Share Document