scholarly journals Fabrication of Different SnO2 Nanorods for Enhanced Photocatalytic Degradation and Antibacterial Activity

Author(s):  
Govindhan Gnanamoorthy ◽  
Virendra Kumar Yadav ◽  
Krishna Yadav ◽  
Kandasamy Ramar ◽  
Javed Alam ◽  
...  

Abstract The acid-mediated (Oxalic acid [OXA], Cinnamic acid [CA], and itaconic acid [IA]) SnO2 nanorods were synthesized by the hydrothermal method. The synthesized SnO2 nanorods, in turn, were analyzed with various physic-chemical techniques such as the X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), scanning electron microscope (SEM), and Raman spectroscopy. Furthermore, the photocatalytic activity of the different SnO2 nanorods was investigated with the malachite green (MG) dye under visible light illumination. The OXA-SnO2 nanorods displayed an excellent degradation performance with observed values of 91% compared to other nanomaterials’ (CA and IA-SnO2) photocatalytic activity. The different synthesized SnO2 materials were tested for antibacterial and antifungal studies; this result may be used or developed in future research activities.

2018 ◽  
Vol 281 ◽  
pp. 878-884
Author(s):  
Zhi Wei Zhou ◽  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Shu Wang Duo

In order to enhance hole/electron separation and charge transfer in photocatalysts, the heterostructured g-C3N4/CoAPO-5 hybrids materials were synthesized via a simple grinding method and were investigated using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The optical properties of g-C3N4/CoAPO-5 hybrids materials were measured by ultraviolet-visible diffuse-reflectance spectroscopy (DRS), photoluminescence (PL) spectra and ultraviolet-visible absorption (UV-Vis) spectra. Under visible-light illumination, this work shows the heterogeneous g-C3N4/CoAPO-5 hybrids present a superior photocatalytic activity.


2020 ◽  
Author(s):  
Chukwunonso Onyenanu ◽  
Lovet Emembolu

Abstract Photocatalytic activity of the natural semiconducting sphalerite mineral from Abuni, Nasarawa State, Nigeria was studied for the degradation of methylene blue (MB). Natural Sphalerite as a visible – light responsive photocatalyst was characterized by X ray diffraction (XRD), X ray fluorescence (XRF) and surface area analysis. To further enhance the photocatalytic activity of natural Sphalerite, the chemical composition of the sphalerite was varied via leaching with oxalic acids. The photocatalytic activity of the Natural sphalerite, leached sphalerite and as well as the calcined leachates was tested for MB degradation under visible light illumination. The result shows a very high percentage of MB degradation by natural sphalerite after 60mintues of light irradiation time. A composite of ZnO -α –Fe2O3 -ϒ-Fe2O3 with traces amount of MoO and MnO2 was synthesized by calcination of the obtained leachates at 1000°C for 4hours. The photocatalytic degradation of methylene blue dye follows pseudo first order kinetics.


2021 ◽  
Vol 9 (4) ◽  
pp. 167
Author(s):  
Ulfa Farizka Hidayati ◽  
Anthoni B. Aritonang ◽  
Lia Destiarti

Titanium dioxide-reduced graphene oxide (TiO2-rGO) was synthesized by hydrothermal method using TiO2 powder and rGO precursor from graphite rod by modified Marcano Method. The obtained TiO2-rGO photocatalyst was characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Diffuse reflectance UV (DRUV). Based on XRD diffractogram, it is known that TiO2 has an anatase crystal phase. In the FTIR spectrum, it was observed that there was an absorption peak at the wavenumber of 1630 cm-1 from the vibration (C=C) as an indication that the C atom was incorporated into the TiO2 structure. The incorporation of C atoms into the TiO2 structure to form TiO2-rGO causes the bandgap energy to decrease from 3.29 eV to 3.20 eV. The photocatalytic activity was tested against decolorization of methylene blue solution for 180 minutes under visible light illumination from a 50 watt LED lamp. Every 10 minutes, absorbance was measured using a UV-Vis spectrophotometer at a wavelength of 664 nm. TiO2-rGO photocatalyst has better photocatalytic activity with %D of 96.39% under UV light and 84.32% under visible light illumination, while TiO2 is only able to degrade 93.87% and 36.55%, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pham Dinh Du ◽  
Nguyen Trung Hieu ◽  
Tran Vinh Thien

Zeolitic imidazolate framework-8 (ZIF-8) is synthesized quickly at room temperature in methanol with the support of ultrasound. Porous ZnO is also prepared via the thermal treatment of ZIF-8. The photocatalytic activities of the obtained materials are demonstrated via methylene blue (MB) decomposition under UV radiation. The obtained materials are characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, UV-Vis diffuse reflectance spectra (DR-UV-Vis), and photoluminescence spectra. The results indicate that ZIF-8 and the materials obtained from ZIF-8 by heating in the air have photocatalytic activity under UV irradiation. The ZnO sample obtained by ZIF-8 calcination at 660°C for 5 h has the highest photocatalytic activity. However, the MB degradation photocatalytic efficiency of the ZnO samples is even lower than that of the ZIF-8 samples, indicating that ZIF-8 is an effective photocatalyst in the treatment of environmental pollution.


2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mingjie Ma ◽  
Weijie Guo ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Guanyu Wang

TiO2/fine char (FC) photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB) aqueous solution under UV light irradiation. The results showed that TiO2was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.


2011 ◽  
Vol 306-307 ◽  
pp. 1459-1463
Author(s):  
Yan Jun Xin ◽  
De Jie Cui

Wormhole-shaped F-doped TiO2/Ti photoelectrodes were prepared by microarc oxidation method in NaF solution. The morphology and structure of the photoelectrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). It was found that F-doped TiO2/Ti photoelectrodes were porous and composed of anatase TiO2. The photocatalytic properties of F-doped TiO2/Ti photoelectrodes were investigated by photodiscoloration rate of Rhodamine B(Rh.B) under different conditions. All results showed that the photoelectrodes prepared at voltage of 160V, NaF concentration of 0.01mol/L and oxidation time of 10min have optimal photocatalytic performance. Rh.B was almost completely removed by F-doped TiO2/Ti photoelectrodes after 120min under the illumination of artificial visible light.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Gang Xin ◽  
Yali Meng

Graphitic carbon nitride (g-C3N4) was synthesized at 520°C by the pyrolysis of cyanamide, dicyandiamide, and melamine. The samples were characterized by X–ray diffraction (XRD), UV-visible diffuse reflectance spectra, Fourier transform infrared spectroscopy (FT-IR), and elemental analyzer. The photocatalytic activity of g-C3N4was evaluated by the photodegrading experiments of methylene blue (MB). The results indicated that g-C3N4. A photocatalytic mechanism presumed the MB photodegradation over the C3N4photocatalyst is attributed to photogenerated electron impelled multistep reduction of O2.


2018 ◽  
Author(s):  
azadeh ebrahimian pirbazari ◽  
Pejman Monazzam ◽  
Behnam Fakhari Kisomi

In this work, TiO2 nanoparticles containing different amounts of cobalt were synthesized by sol-gel method using titanium (IV) isopropoxide and cobalt chloride as titanium and cobalt precursors, respectively. X-ray diffraction (XRD) results showed prepared samples include 100% anatase phase. The presence of cobalt in TiO2 nanoparticle network was established by XRD, scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX), Fourier transform infrared (FT-IR) and N2 physisorption techniques. The increase of cobalt doping enhanced redshif in the diffuse reflectance spectra. The photocatalytic activity of the prepared samples was tested for degradation of methylene blue (MB) as a model of dye. Although the photocatalytic activity of pure TiO2 was found to be higher than that of Co/TiO2 samples under UV irradiation, the presence of 0.24% cobalt dopant in TiO2 nanoparticles resulted in a photocatalyst with the highest activity under visible light


2013 ◽  
Vol 668 ◽  
pp. 29-32
Author(s):  
Wen Quan Cui ◽  
Shuang Long Lin ◽  
Shan Shan Ma ◽  
Li Liu ◽  
Ying Hua Liang

The composite Ag2S/K2Ti4O9 photocatalyst was synthesized via a precipitation method. The structure of the photocatalyst was determined by powder X-ray diffraction, scanning electron microscope. The photocatalytic properties for organic matter degradation of the photocatalyst were examined under visible light irradiation. The results showed that, the sample which synthesized at 25°C via a precipitation route,using nitric acid silver and thiourea as the raw materials in the absence of any surfactants or templates has the highest crystallinity and investigated its catalytic behavior. RhB as degradation object, different dosing quantity of the degradation rate were examined, The best dosing quantity (1000 MgL-1) degradation rate was 18.93%. And with K2Ti4O9 for ontology, the degradation of different load rate were examined, The best load (25%) of the degradation rate is 20.57%. The results revealed the Ag2S potential applications in photocatalytic degradation for organic pollutants.


Sign in / Sign up

Export Citation Format

Share Document