scholarly journals Global Growth in Offshore Wind Turbine Technology

Author(s):  
Mehmet Bilgili ◽  
Hakan Alphan

Abstract Due to the commissioning of floating wind units, the latest technological developments, significant growth, and improvements in turbines, developments in offshore wind power capacity are estimated to increase faster than in the last two decades. The total installed offshore wind power capacity, which is currently 35 GW, is predicted to be approximately 382 GW by 2030 and approximately 2,002 GW by 2050. For this reason, attempts are proposed to lower levelised cost of electricity (LCOE) for offshore wind power generation more than for other energy sources. In this study firstly, the global growth in the nominal capacity and size of offshore wind turbines over the last twenty years is examined. Then, the effects of this increase in nominal capacity and size on the LOCE, total installation cost (TIC), and turbine capacity factor are investigated. In parallel with this development, the changes in distance to shore and water depth for installation offshore wind power plants are reviewed according to the years. In addition, the effects of this global growth on wind farm capacity, turbine-specific power capacity, number of turbines per GW, and area needed per GW are investigated and discussed in detail.

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1960
Author(s):  
Hsing-Yu Wang ◽  
Hui-Ming Fang ◽  
Yun-Chih Chiang

In this study, a hydrodynamic model was used that includes the effects of wave–current interactions to simulate the wave and current patterns before and after offshore wind turbine installation in western Taiwan. By simulating the waves and currents after the offshore wind turbine was established, the waves and currents caused by the wind turbine were seen to have a limited range of influence, which is probably within an area about four to five times the size of the diameter (12–15 m) of the foundation structure. Overall, the analysis of the simulation results of the wave and current patterns after the offshore wind turbines were established shows that the underwater foundation only affected the local area near the pile structure. The wind farm (code E) of the research case can be equipped with about 720 cage cultures; if this is extended to other wind farms in the western sea area, it should be possible to produce economic-scale farming operations such as offshore wind power and fisheries. However, this study did not consider the future operation of the entire offshore wind farm. If the operation and maintenance of offshore wind farms are not affected, and if the consent of the developer is obtained, it should be possible to use this method to provide economically large-scale farming areas as a mutually beneficial method for offshore wind power generation and fisheries.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2058
Author(s):  
Zheren Zhang ◽  
Yingjie Tang ◽  
Zheng Xu

Offshore wind power has great development potential, for which the key factors are reliable and economical wind farms and integration systems. This paper proposes a medium-frequency wind farm and MMC-HVDC integration system. In the proposed scheme, the operating frequency of the offshore wind farm and its power collection system is increased from the conventional 50/60 Hz rate to the medium-frequency range, i.e., 100–400 Hz; the offshore wind power is transmitted to the onshore grid via the modular multilevel converter-based high-voltage direct current transmission (MMC-HVDC). First, this paper explains the principles of the proposed scheme in terms of the system topology and control strategy aspects. Then, the impacts of increasing the offshore system operating frequency on the main parameters of the offshore station are discussed. As the frequency increases, it is shown that the actual value of the electrical equipment, such as the transformers, the arm inductors, and the SM capacitors of the rectifier MMC, can be reduced, which means smaller platforms are required for the step-up transformer station and the converter station. Then, the system operation characteristics are analyzed, with the results showing that the power losses in the system increase slightly with the increase of the offshore AC system frequency. Based on time domain simulation results from power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC), it is noted that the dynamic behavior of the system is not significantly affected with the increase of the offshore AC system frequency in most scenarios. In this way, the technical feasibility of the proposed offshore platform miniaturization technology is proven.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3759
Author(s):  
Kai Huang ◽  
Lie Xu ◽  
Guangchen Liu

A diode rectifier-modular multilevel converter AC/DC hub (DR-MMC Hub) is proposed to integrate offshore wind power to the onshore DC network and offshore production platforms (e.g., oil/gas and hydrogen production plants) with different DC voltage levels. The DR and MMCs are connected in parallel at the offshore AC collection network to integrate offshore wind power, and in series at the DC terminals of the offshore production platform and the onshore DC network. Compared with conventional parallel-connected DR-MMC HVDC systems, the proposed DR-MMC hub reduces the required MMC converter rating, leading to lower investment cost and power loss. System control of the DR-MMC AC/DC hub is designed based on the operation requirements of the offshore production platform, considering different control modes (power control or DC voltage control). System behaviors and requirements during AC and DC faults are investigated, and hybrid MMCs with half-bridge and full-bridge sub-modules (HBSMs and FBSMs) are used for safe operation during DC faults. Simulation results based on PSCAD/EMTDC validate the operation of the DR-MMC hub.


HVDC Grids ◽  
2016 ◽  
pp. 109-140
Author(s):  
Mikel De Prada-Gil ◽  
Jose Luis Domínguez-García ◽  
Francisco Díaz-González ◽  
Andreas Sumper

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 970 ◽  
Author(s):  
Sung-Hyun Eom ◽  
Seong-Soo Kim ◽  
Jeong-Bae Lee

The anti-corrosion performance of coating systems (cathode protection, organic coating, and duplex coating) applied to prevent the corrosion of offshore wind power plants was assessed. As an assessment method, the adhesion strength of each coating system was evaluated after exposing the coatings to the marine environment and an indoor salt spray test. It was confirmed that the adhesion strength varied depending on the exposure period, and the deterioration of adhesion strength was related to the fracture type of each coating layer. In addition, the fracture type of each coating system was analyzed and the adhesion strength was corrected according to the fracture type. The corrosion rates after exposure to the marine environment and indoor salt spray were compared and examined using the corrected values.


2019 ◽  
Vol 136 ◽  
pp. 04061
Author(s):  
Yazhou Li ◽  
Li Dong

The offshore wind turbine single pile foundation structure is simple and easy to install, but in the earthquake environment, large horizontal displacement is easy to occur, which affects the safe operation of offshore wind turbines. For this reason, the bearing characteristics and influencing factors of large-diameter single-pile offshore wind power under earthquake load are analyzed. The Mohr-Coulomb model is used as the model. The ABAQUS is used to construct the large-scale single-pile finite element model of offshore wind power. Loads and analysis of bearing characteristics and influencing factors of large-diameter single-pile offshore wind power under seismic loading. It is found that the increase of pile foundation depth will significantly reduce the horizontal displacement at the top of single pile. After increasing to a certain extent, it has no significant effect on the development of horizontal deformation of large diameter single pile; with the increase of pile diameter and wall thickness, The deformation of large diameter single pile foundation is reduced, but the influence of the pile foundation thickness on the horizontal deformation of the large diame-ter single pile foundation is no longer significant.


2019 ◽  
Vol 254 ◽  
pp. 113719 ◽  
Author(s):  
Rongsen Jin ◽  
Peng Hou ◽  
Guangya Yang ◽  
Yuanhang Qi ◽  
Cong Chen ◽  
...  

2020 ◽  
Vol 14 (12) ◽  
pp. 2166-2175
Author(s):  
Jaime Martínez-Turégano ◽  
Salvador Añó-Villalba ◽  
Soledad Bernal-Perez ◽  
Ruben Peña ◽  
Ramon Blasco-Gimenez

Sign in / Sign up

Export Citation Format

Share Document