scholarly journals Comparison of the Mass Tissue Strength of Strawberry Fruit between Vertical and Horizontal axes

Author(s):  
Ansar Ansar ◽  
Murad Murad ◽  
Sukmawaty Sukmawaty ◽  
Lulu Ilmaknun

Abstract BackgroundStrawberry fruit has a thin skin layer, so it is very susceptible to tissue mass damage during post-harvest handling. This article compares the strength of the strawberry mass tissue between the vertical and horizontal axes using a compression test at different speeds and compressibility levels. ResultsThe results showed that the mass tissue damage of strawberries was greater when compressed from the horizontal axis than from the vertical axis. The loading from the vertical axis obtained a combined mechanical response between the fruit structure and mass tissue cells, while from the horizontal axis the mechanical response was obtained only from the fruit structure. During compression, the fruit undergoes 3 phases of deformation, namely elastic, plastic, and permanent mass tissue damage. In the elastic deformation phase, the fruit mass tissue has not been damaged. Along with the duration of the compression, mass tissue damage has started to occur. ConclusionThe outer mass tissue of a strawberry is more susceptible to damage than the deep mass tissue. Therefore, the post-harvest handling process from agricultural land to the hands of consumers requires gentle handling to maintain fruit quality. The percentage of mass tissue damage of strawberries can be minimized if arranged vertically in the package. The percentage of fruit mass tissue damage obtained from this study can be used to predict changes in fruit volume non-destructively.

Geophysics ◽  
1990 ◽  
Vol 55 (10) ◽  
pp. 1386-1388 ◽  
Author(s):  
M. Becquey ◽  
M. Dubesset

In well seismics, when operating with a three‐component tool, particle velocities are measured in the sonde coordinate system but are often needed in other systems (e.g., source‐bound or geographic). When the well is vertical, a change from the three orthogonal components of the sonde to another orthogonal coordinate system can be performed through one rotation around the vertical axis and, if necessary, another one around a horizontal axis (Hardage, 1983). If the well is deviated, the change of coordinate system remains easy in the case when the source is located at the vertical of the sonde, or in the case when the source stands in the vertical plane defined by the local well axis. In the general case (offset VSPs or walkaways) or when looking for unknown sources (such as microseismic emissions induced by hydraulic fracturing), coordinate rotation may still be performed, provided that we first get back to a situation in which one of the axes is vertical.


Author(s):  
Amirul Syafiq Sadun ◽  
Jamaludin Jalani ◽  
Suziana Ahmad ◽  
Amiera Saryati Sadun ◽  
Sumaiya Mashori

Recently, combat robot competition has become one of the most famous engineering competitions among schools and universities. The robots are usually built with a destructive weapon, which can immobilize or disable opponent’s robot and win the match. Despite the variety of robot design and concept, the trend has shown that most of the local contestant tend to design a horizontal axis weapon type. In this project, a wireless vertical axis bar spinner combat robot is designed and developed for the 3rd Malaysia Combat Robot Competition which was held at National Science Centre (PSN) in 2017. The robot is controlled using radio control (RC) and powered by a highly discharge 22.2V Lithium Polymer (LiPo) chemical battery. Furthermore, related analysis has been conducted to meet the design and performance requirement of the competition. With the DC brush motor and thick metal bar rotating in vertical axis, the robot has proven to produce high power, torque and speed during the competition.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 288-288
Author(s):  
S Nozawa

When two vertical short lines are alternately flashed at certain SOAs, a shortening of the apparent path of the stroboscopic movement is perceived. In the experiments reported here, factors influencing the shortening effect were studied with lines created on a CRT display. Experiment 1 was designed to study the effect of SOA. Each stimulus line was always presented for 100 ms, but intervals were varied in the range from 25 to 800 ms. With short and long SOAs almost no shortening illusion was observed, whereas the SOA for optimal stroboscopic motion (200 ms) also produced the largest illusion (ca 16%). This agrees with the classic study by Scholz (1924 Psychologische Forschung5 219 – 272) who found the largest illusion (25%) at the optimal frequency for stroboscopic motion. Experiment 2 dealt with the effect of inversions (I), mirror reflections (M), and rotations (R) of the line during the stroboscopic movement (see Kolars and Pomerantz, 1971 Journal of Experimental Psychology87 99 – 108). The particular movements were signalled by means of a short horizontal line added to one end of each of the two vertical lines of experiment 1. The configurations were (1), signifying parallel motion in one plane; (2), locomotion with rotation around the vertical axis (M); (3), locomotion with rotation around the horizontal axis (I); and (4), locomotion with rotation in the plane of the display (R). In all these conditions, the shortening illusion was significantly larger than in experiment 1. The differences between the four conditions were not statistically significant, but the illusion under condition (1) seemed smaller than in the other three conditions. With SOAs for optimal stroboscopic motion, ‘rotation’ paths tended to appear three-dimensional.


2020 ◽  
Vol 222 (2) ◽  
pp. 940-955
Author(s):  
P Calvín ◽  
E L Pueyo ◽  
M J Ramón ◽  
A M Casas-Sainz ◽  
J J Villalaín

SUMMARY The Small Circle (SC) tools analyse the stereographic tracks (small circles) followed by the palaeomagnetic vectors during folding processes. Working with interfolding and synfolding remagnetizations, the Small Circle Intersection (SCI) method allows finding the best solution of grouping that should correspond with the remagnetization direction. Once this is known, it is possible to determine the magnetization age as well as the degree of bed tilting at this moment. The SC tools are based on some assumptions, among which the coaxiality between the different deformation events is the one addressed in this work (i.e. absence of vertical axis rotations, VARs, or differential horizontal axis rotations, dHARs). This assumption is based on the necessity of knowing the rotation axis for folding after the acquisition of the remagnetization, and SC tools consider the bedding strike as this axis, something that is only accomplished under coaxial folding. In order to explore how non-coaxiality affects the solutions derived from the SC methods, we first (i) identify the variables that control these errors through simple models that only consider two theoretical palaeomagnetic sites, after that it is possible (ii) to derive the mathematical relationships between them. Finally, we (iii) simulate errors derived from the use of SC tools using a population of 30 palaeomagnetic sites recreating different possible scenarios with VARs and dHARs in nature.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 74 ◽  
Author(s):  
Muhd Khudri Johari ◽  
Muhammad Azim A Jalil ◽  
Mohammad Faizal Mohd Shariff

As the demand for green technology is rising rapidly worldwide, it is important that Malaysian researchers take advantage of Malaysia’s windy climates and areas to initiate more power generation projects using wind. The main objectives of this study are to build a functional wind turbine and to compare the performance of two types of design for wind turbine under different speeds and behaviours of the wind. A three-blade horizontal axis wind turbine (HAWT) and a Darrieus-type vertical axis wind turbine (VAWT) have been designed with CATIA software and constructed using a 3D-printing method. Both wind turbines have undergone series of tests before the voltage and current output from the wind turbines are collected. The result of the test is used to compare the performance of both wind turbines that will imply which design has the best efficiency and performance for Malaysia’s tropical climate. While HAWT can generate higher voltage (up to 8.99 V at one point), it decreases back to 0 V when the wind angle changes. VAWT, however, can generate lower voltage (1.4 V) but changes in the wind angle does not affect its voltage output at all. The analysis has proven that VAWT is significantly more efficient to be built and utilized for Malaysia’s tropical and windy climates. This is also an initiative project to gauge the possibility of building wind turbines, which could be built on the extensive and windy areas surrounding Malaysian airports.  


2019 ◽  
Vol 20 (4) ◽  
pp. 750-767
Author(s):  
Wen Dong ◽  
Yingjian Lu ◽  
Tianbao Yang ◽  
Frances Trouth ◽  
Kimberly S. Lewers ◽  
...  

Author(s):  
David Marten ◽  
Juliane Wendler ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

A double-multiple-streamtube vertical axis wind turbine simulation and design module has been integrated within the open-source wind turbine simulator QBlade. QBlade also contains the XFOIL airfoil analysis functionalities, which makes the software a single tool that comprises all functionality needed for the design and simulation of vertical or horizontal axis wind turbines. The functionality includes two dimensional airfoil design and analysis, lift and drag polar extrapolation, rotor blade design and wind turbine performance simulation. The QBlade software also inherits a generator module, pitch and rotational speed controllers, geometry export functionality and the simulation of rotor characteristics maps. Besides that, QBlade serves as a tool to compare different blade designs and their performance and to thoroughly investigate the distribution of all relevant variables along the rotor in an included post processor. The benefits of this code will be illustrated with two different case studies. The first case deals with the effect of stall delaying vortex generators on a vertical axis wind turbine rotor. The second case outlines the impact of helical blades and blade number on the time varying loads of a vertical axis wind turbine.


2013 ◽  
Vol 423-426 ◽  
pp. 2846-2850
Author(s):  
Da Yong Ning ◽  
Chang Le Sun ◽  
Yong Jun Gong

A mathematic method of ensuring motor-based photoelectric tracking instrumentation work high accurately was introduced, the SCA100T inclinometer was settled under the base, and examine plane of base real-timely. The inclinometer output analog signals and transmit it to AT89C51 through A/D converters, and AT89C51 output digital signals and transmit it to PC through RS-232. The PC convert signals of inclinometer into angle values of horizontal axis and vertical axis and transmit the values to main controlled system of photoelectric tracking instrumentation, the controlled system change the angles of horizontal axis and vertical axis. The CAD model was built and simulated with virtual prototype technology .Analysis and simulation proved that the mathematic method could keep tracking precision of motor-based photoelectric tracking instrumentation.


Sign in / Sign up

Export Citation Format

Share Document