scholarly journals Heat Flow Data And Thermal Structure In North East Japan

Author(s):  
Takumi Matsumoto ◽  
Ryuji Yamada ◽  
Satoshi Iizuka

Abstract New heat flow data corrected for climate change over the entire northeastern region of Japan were obtained using the temperature profile of the borehole of NIED High Sensitivity Seismograph Network (Hi-net). In addition, the crustal temperature structure was obtained by using a crustal structure model that takes into account the temperature dependence of thermal conductivity and the difference in heat generation due to lithology, using a crustal structure model that takes into account sedimentary layers rather than a uniform structure model with exposed bedrock at the surface. The results show that the crustal temperature structure in areas with thick sedimentary layers is improved compared to the previous model.

2019 ◽  
Vol 219 (3) ◽  
pp. 1648-1659 ◽  
Author(s):  
B Mather ◽  
L Moresi ◽  
P Rayner

SUMMARY The variation of temperature in the crust is difficult to quantify due to the sparsity of surface heat flow observations and lack of measurements on the thermal properties of rocks at depth. We examine the degree to which the thermal structure of the crust can be constrained from the Curie depth and surface heat flow data in Southeastern Australia. We cast the inverse problem of heat conduction within a Bayesian framework and derive its adjoint so that we can efficiently find the optimal model that best reproduces the data and prior information on the thermal properties of the crust. Efficiency gains obtained from the adjoint method facilitate a detailed exploration of thermal structure in SE Australia, where we predict high temperatures within Precambrian rocks of 650 °C due to relatively high rates of heat production (0.9–1.4 μW m−3). In contrast, temperatures within dominantly Phanerozoic crust reach only 520 °C at the Moho due to the low rates of heat production in Cambrian mafic volcanics. A combination of the Curie depth and heat flow data is required to constrain the uncertainty of lower crustal temperatures to ±73 °C. We also show that parts of the crust are unconstrained if either data set is omitted from the inversion.


2020 ◽  
Author(s):  
Sheona Masterton ◽  
Samuel Cheyney ◽  
Chris Green ◽  
Peter Webb

<p>Temperature and heat flow are key parameters for understanding the potential for source rock maturation in sedimentary basins. Knowledge of the thermal structure of the lithosphere in both a regional and local context can provide important constraints for modelling basin evolution through time.</p><p>In recent years, global coverage of heat flow data constraints have enhanced scientific understanding of the thermal state of the lithosphere. However, sample bias and variability in sampling methods continues to be a major obstacle to heat flow-derived isotherm prediction, particularly in frontier areas where data are often sparse or poorly constrained. Consideration and integration of alternative approaches to predict temperature at depth may allow interpolation of surface heat flow in such data poor areas.   </p><p>We have attempted to integrate three independent approaches to modelling temperature with depth. The first approach is based on heat flow observations, in which a 1D steady-state model of the lithosphere is constructed from quality-assessed surface heat flow data, crustal thickness estimates and associated lithospheric thermal properties. The second approach is based on terrestrial (airborne, ground and shipborne) magnetic data, in which the maximum depth of magnetisation within the lithosphere is estimated using a de-fractal method and used as a proxy for Curie temperature depth. The third approach is based on satellite magnetic data and estimates the thickness of the magnetic layer within the lithosphere based on the varying amplitudes of satellite magnetic data, accounting for global variations in crustal magnetisation. Curie temperature depth results from each of these approaches have been integrated into a single global grid, then used to calculate temperature-depth variations through the crust.</p><p>We have evaluated our isotherm predictions by comparing them with temperature-depth control points and undertook qualitative and quantitative analyses of discrepancies that exist between different modelling approaches; this has provided insights into the origin of such discrepancies that can be integrated into our models to generate a better controlled global temperature-depth result.  </p><p>We present details of our methodology and the results of our integrated studies. We demonstrate areas where the independent results are in good agreement, providing vital information for high-level basin screening. We also highlight areas of disagreement and suggest possible causes for these discrepancies and potential resolutions.</p>


2014 ◽  
Vol 35 (4) ◽  
pp. 345-359 ◽  
Author(s):  
V. I. Starostenko ◽  
M. N. Dolmaz ◽  
R. I. Kutas ◽  
O. M. Rusakov ◽  
E. Oksum ◽  
...  

2021 ◽  
pp. 147592172199847
Author(s):  
William Soo Lon Wah ◽  
Yining Xia

Damage detection methods developed in the literature are affected by the presence of outlier measurements. These measurements can prevent small levels of damage to be detected. Therefore, a method to eliminate the effects of outlier measurements is proposed in this article. The method uses the difference in fits to examine how deleting an observation affects the predicted value of a model. This allows the observations that have a large influence on the model created, to be identified. These observations are the outlier measurements and they are eliminated from the database before the application of damage detection methods. Eliminating the outliers before the application of damage detection methods allows the normal procedures to detect damage, to be implemented. A multiple-regression-based damage detection method, which uses the natural frequencies as both the independent and dependent variables, is also developed in this article. A beam structure model and an experimental wooden bridge structure are analysed using the multiple-regression-based damage detection method with and without the application of the method proposed to eliminate the effects of outliers. The results obtained demonstrate that smaller levels of damage can be detected when the effects of outlier measurements are eliminated using the method proposed in this article.


Sign in / Sign up

Export Citation Format

Share Document