Sparse Autoencoder-Based Multi-Head Deep Neural Networks for Machinery Fault Diagnostics With Novelty Detection

Author(s):  
Zhe Yang ◽  
Dejan Gjorgjevikj ◽  
Jian-Yu Long ◽  
Yan-Yang Zi ◽  
Shao-Hui Zhang ◽  
...  

Abstract Novelty detection is a challenging task for the machinery fault diagnosis. A novel fault diagnostic method is developed for dealing with not only diagnosing the known type of defect, but also detecting novelties, i.e. the occurrence of new types of defects which have never been recorded. To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer. The results show that it is able to accurately diagnose known types of defects, as well as to detect unknown defects, outperforming other state-of-the-art methods.

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhe Yang ◽  
Dejan Gjorgjevikj ◽  
Jianyu Long ◽  
Yanyang Zi ◽  
Shaohui Zhang ◽  
...  

AbstractSupervised fault diagnosis typically assumes that all the types of machinery failures are known. However, in practice unknown types of defect, i.e., novelties, may occur, whose detection is a challenging task. In this paper, a novel fault diagnostic method is developed for both diagnostics and detection of novelties. To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer. The results show that its performance is satisfactory both in detection of novelties and fault diagnosis, outperforming other state-of-the-art methods. This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect, but also detect unknown types of defects.


Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.


2021 ◽  
Author(s):  
Anh Nguyen ◽  
Khoa Pham ◽  
Dat Ngo ◽  
Thanh Ngo ◽  
Lam Pham

This paper provides an analysis of state-of-the-art activation functions with respect to supervised classification of deep neural network. These activation functions comprise of Rectified Linear Units (ReLU), Exponential Linear Unit (ELU), Scaled Exponential Linear Unit (SELU), Gaussian Error Linear Unit (GELU), and the Inverse Square Root Linear Unit (ISRLU). To evaluate, experiments over two deep learning network architectures integrating these activation functions are conducted. The first model, basing on Multilayer Perceptron (MLP), is evaluated with MNIST dataset to perform these activation functions.Meanwhile, the second model, likely VGGish-based architecture, is applied for Acoustic Scene Classification (ASC) Task 1A in DCASE 2018 challenge, thus evaluate whether these activation functions work well in different datasets as well as different network architectures.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Ruoxi Qin ◽  
Linyuan Wang ◽  
Wanting Yu ◽  
...  

In image classification of deep learning, adversarial examples where input is intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those researches in these networks are only for one aspect, either an attack or a defense. There is in the improvement of offensive and defensive performance, and it is difficult to promote each other in the same framework. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of the original instances and adversarial examples, especially promoting attackers and defenders to confront each other and improve their ability. For CycleAdvGAN, once the GeneratorA and D are trained, GA can generate adversarial perturbations efficiently for any instance, improving the performance of the existing attack methods, and GD can generate recovery adversarial examples to clean instances, defending against existing attack methods. We apply CycleAdvGAN under semiwhite-box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also has efficiently improved the defense ability, which made the integration of adversarial attack and defense come true. In addition, it has improved the attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.


2020 ◽  
Vol 34 (04) ◽  
pp. 5784-5791
Author(s):  
Sungho Shin ◽  
Jinhwan Park ◽  
Yoonho Boo ◽  
Wonyong Sung

Quantization of deep neural networks is extremely essential for efficient implementations. Low-precision networks are typically designed to represent original floating-point counterparts with high fidelity, and several elaborate quantization algorithms have been developed. We propose a novel training scheme for quantized neural networks to reach flat minima in the loss surface with the aid of quantization noise. The proposed training scheme employs high-low-high-low precision in an alternating manner for network training. The learning rate is also abruptly changed at each stage for coarse- or fine-tuning. With the proposed training technique, we show quite good performance improvements for convolutional neural networks when compared to the previous fine-tuning based quantization scheme. We achieve the state-of-the-art results for recurrent neural network based language modeling with 2-bit weight and activation.


Author(s):  
M. Rußwurm ◽  
C. Pelletier ◽  
M. Zollner ◽  
S. Lefèvre ◽  
M. Körner

Abstract. We present BreizhCrops, a novel benchmark dataset for the supervised classification of field crops from satellite time series. We aggregated label data and Sentinel-2 top-of-atmosphere as well as bottom-of-atmosphere time series in the region of Brittany (Breizh in local language), north-east France. We compare seven recently proposed deep neural networks along with a Random Forest baseline. The dataset, model (re-)implementations and pre-trained model weights are available at the associated GitHub repository (https://github.com/dl4sits/breizhcrops) that has been designed with applicability for practitioners in mind. We plan to maintain the repository with additional data and welcome contributions of novel methods to build a state-of-the-art benchmark on methods for crop type mapping.


2021 ◽  
Vol 13 (24) ◽  
pp. 5009
Author(s):  
Lingbo Huang ◽  
Yushi Chen ◽  
Xin He

In recent years, supervised learning-based methods have achieved excellent performance for hyperspectral image (HSI) classification. However, the collection of training samples with labels is not only costly but also time-consuming. This fact usually causes the existence of weak supervision, including incorrect supervision where mislabeled samples exist and incomplete supervision where unlabeled samples exist. Focusing on the inaccurate supervision and incomplete supervision, the weakly supervised classification of HSI is investigated in this paper. For inaccurate supervision, complementary learning (CL) is firstly introduced for HSI classification. Then, a new method, which is based on selective CL and convolutional neural network (SeCL-CNN), is proposed for classification with noisy labels. For incomplete supervision, a data augmentation-based method, which combines mixup and Pseudo-Label (Mix-PL) is proposed. And then, a classification method, which combines Mix-PL and CL (Mix-PL-CL), is designed aiming at better semi-supervised classification capacity of HSI. The proposed weakly supervised methods are evaluated on three widely-used hyperspectral datasets (i.e., Indian Pines, Houston, and Salinas datasets). The obtained results reveal that the proposed methods provide competitive results compared to the state-of-the-art methods. For inaccurate supervision, the proposed SeCL-CNN has outperformed the state-of-the-art method (i.e., SSDP-CNN) by 0.92%, 1.84%, and 1.75% in terms of OA on the three datasets, when the noise ratio is 30%. And for incomplete supervision, the proposed Mix-PL-CL has outperformed the state-of-the-art method (i.e., AROC-DP) by 1.03%, 0.70%, and 0.82% in terms of OA on the three datasets, with 25 training samples per class.


Sign in / Sign up

Export Citation Format

Share Document