scholarly journals Study on Laser Powder Bed Fusion of Nickel-base Alloy: Scanning Strategy, Properties and Compression Properties

Author(s):  
Bo Qian ◽  
Hongri Fan ◽  
Tengfei Li ◽  
Jianrui Zhang ◽  
Jiangtao Xi ◽  
...  

Abstract Aiming at laser powder bed fusion of GH3536 nickel base alloy, the effects of different scanning strategies on microstructure, porosity and mechanical properties were explored. In the aspect of microstructure and micro hardness of the sample, three scanning strategies had little difference; in the aspect of macro mechanical properties of the sample, the slope subarea scanning was better than the helix and island scanning. On this basis, the slope subarea scanning was selected as the optimal scanning strategy to form the G-surface structure, and the compression performance of G-surface was studied. The results showed that: (1) the compression performance of G-surface structure was smaller than that of solid structure; while G-surface structure had a smooth compression curve, which indicated the good energy absorption characteristics; (2) with the increase of wall thickness, the mechanical performance of G-surface structure was also enhanced, while the energy absorption capacity was constantly reduced; (3) with the same wall thickness, the compression performance of sample in building direction (BD) is higher than that in horizontal direction (HD).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Qian ◽  
Hongri Fan ◽  
Jianrui Zhang ◽  
Tengfei Li ◽  
Jiangtao Xi ◽  
...  

AbstractAiming at laser powder bed fusion of GH3536 nickel base alloy, the effects of different scanning strategies on microstructure, porosity and mechanical properties were explored. In the aspect of microstructure and micro hardness of the sample, three scanning strategies had little difference; in the aspect of macro mechanical properties of the sample, the slope subarea scanning was better than the helix and island scanning. On this basis, the slope subarea scanning was selected as the optimal scanning strategy to form the G-surface structure, and the compression performance of G-surface was studied. The results showed that: (1) the compression performance of G-surface structure was smaller than that of solid structure, The compression strength of G-surface can only reach about 20% of solid structure: the average strength value of G-surface is 220 MPa, solid structure is 1.1 GMpa; while G-surface structure had a smooth compression curve, which indicated the good energy absorption characteristics; (2) with the increase of wall thickness, the mechanical performance of G-surface structure was also enhanced, while the energy absorption capacity was constantly reduced; (3) with the same wall thickness, the compression performance of sample in building direction (BD) is higher than that in horizontal direction (HD).


2021 ◽  
Vol 1161 ◽  
pp. 39-46
Author(s):  
Alexander F. Frey ◽  
Christoph Seyfert ◽  
Peter J. Holfelder

The nickel base alloy IN718 was manufactured by Laser Powder Bed Fusion (LPBF) using a laser spot size of 1024 μm and a laser power of 1.3 kW at a layer thickness of 160μm. The resulting porosity, microstructure and mechanical properties are presented. Very coarse and in build direction elongated grains are stacked to form a polycrystalline material with sharp single-crystal-like texture. The appearance of ∑5 grain boundaries between coincidence side lattices is recognized. Tensile testing shows highly anisotropic mechanical properties according to the revealed texture. Increasing the hatch distance reduces the severity of the texture.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Itziar Serrano-Munoz ◽  
Tatiana Mishurova ◽  
Tobias Thiede ◽  
Maximilian Sprengel ◽  
Arne Kromm ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Nandana Menon ◽  
Tanjheel Hasan Mahdi ◽  
Amrita Basak

Abstract Nickel-base superalloys are extensively used in the production of gas turbine hot-section components as they offer exceptional creep strength and superior fatigue resistance at high temperatures. Such improved properties are due to the presence of precipitate-strengthening phases such as Ni3Ti or Ni3Al (gγ phases) in the normally face-centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvements in properties, the presence of such phases also results in increased processing difficulties as these alloys are prone to crack formation. In this work, specimens of IN738LC are fabricated on a Coherent Creator laser powder bed fusion (L-PBF) additive manufacturing (AM) equipment. Optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-Ray diffraction (XRD) are carried out to characterize the deposit region. Metallurgical continuity is achieved in the entire deposit region and the specimens do not show any warpage. However, the specimens show voids (e.g., pores and cracks) in the deposit region. The results show that the percentage void area decreases along the build height direction. The deposited IN738LC shows polycrystalline grains in the entire deposit region as confirmed by XRD and EBSD. The grain size also shows variations along the build direction. In summary, the results open opportunities for academic researchers and small scale businesses in fabricating high-gγ nickel-base superalloys on a desktop laser powder bed fusion AM equipment


2020 ◽  
Vol 4 (3) ◽  
pp. 91
Author(s):  
Josef Tomas ◽  
Leonhard Hitzler ◽  
Marco Köller ◽  
Jonas von Kobylinski ◽  
Michael Sedlmajer ◽  
...  

Laser-Powder Bed Fusion brings new possibilities for the design of parts, e.g., cutter shafts with integrated cooling channels close to the contour. However, there are new challenges to dimensional accuracy in the production of thin-walled components, e.g., heat exchangers. High degrees of dimensional accuracy are necessary for the production of functional components. The aim is to already achieve these during the process, to reduce post-processing costs and time. In this work, thin-walled ring specimens of H13 tool steel are produced and used for the analysis of dimensional accuracy and residual stresses. Two different scanning strategies were evaluated. One is a stripe scan strategy, which was automatically generated and provided by the machine manufacturer, and a (manually designed) sectional scan strategy. The ring segment strategy is designed by manually segmenting the geometry, which results in a longer preparation time. The samples were printed in different diameters and analyzed with respect to the degree of accuracy and residual stresses. The dimensional accuracy of ring specimens could be improved by up to 81% with the introduced sectional strategy compared to the standard approach.


2021 ◽  
Author(s):  
Nandana Menon ◽  
Tanjheel Hassan Mahdi ◽  
Amrita Basak

Abstract Nickel-base superalloys are extensively used in the production of gas turbine hot-section components as they offer exceptional creep strength and superior fatigue resistance at high temperatures. Such improved properties are due to the presence of precipitate-strengthening phases such as Ni3Ti or Ni3Al (γ′ phases) in the normally face-centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvements in properties, the presence of such phases also results in increased processing difficulties as these alloys are prone to crack formation. In this work, specimens of IN738LC are fabricated on a Coherent Creator laser powder bed fusion (L-PBF) additive manufacturing (AM) equipment. Optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-Ray diffraction (XRD) are carried out to characterize the deposit region. Metallurgical continuity is achieved in the entire deposit region and the specimens do not show any warpage. However, the specimens show voids (e.g., pores and cracks) in the deposit region. The results show that the percentage void area decreases along the build height direction. The deposited IN738LC shows polycrystalline grains in the entire deposit region as confirmed by XRD and EBSD. The grain size also shows variations along the build direction. In summary, the results open opportunities for academic researchers and small-scale businesses in fabricating high-γ′ nickel-base superalloys on a desktop laser powder bed fusion AM equipment.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 988
Author(s):  
Giulio Marchese ◽  
Margherita Beretta ◽  
Alberta Aversa ◽  
Sara Biamino

This study investigates the in situ alloying of a Ni-based superalloy processed by means of laser powder bed fusion (LPBF). For this purpose, Inconel 625 powder is mixed with 1 wt.% of Ti6Al4V powder. The modified alloy is characterized by densification levels similar to the base alloy, with relative density superior to 99.8%. The material exhibits Ti-rich segregations along the melt pool contours. Moreover, Ti tends to be entrapped in the interdendritic areas during solidification in the as-built state. After heat treatments, the modified Inconel 625 version presents greater hardness and tensile strengths than the base alloy in the same heat-treated conditions. For the solution annealed state, this is mainly attributed to the elimination of the segregations into the interdendritic structures, thus triggering solute strengthening. Finally, for the aged state, the further increment of mechanical properties can be attributed to a more intense formation of phases than the base alloy, due to elevated precipitation strengthening ability under heat treatments. It is interesting to note how slight chemical composition modification can directly develop new alloys by the LPBF process.


Sign in / Sign up

Export Citation Format

Share Document