scholarly journals TREM2 Promotes Natural Killer Cell Development in CD3-CD122+NK1.1+ pNK Cells

Author(s):  
Hwa-Youn Lee ◽  
Eun-Hee Lee ◽  
Jawoon Yi ◽  
Kon-Young Ji ◽  
Su-Man Kim ◽  
...  

Abstract Background: Triggering receptor expressed on myeloid cells 2 (TREM2) signaling is considered to regulate anti-inflammatory responses in macrophages, dendritic cell maturation, osteoclast development, induction of obesity, and Alzheimer’s disease pathogenesis. However, little is known regarding the effect of TREM2 on natural killer (NK) cells.Results: Here, we demonstrated for the first time that CD3-CD122+NK1.1+ precursor NK (pNK) cells expressed TREM2 and their population increased in TREM2-overexpressing transgenic (TREM2-TG) mice compared with that in female C57BL/6J wild type (WT) mice. Both NK cell-activating receptors and NK cell-associated genes were expressed at higher levels in various tissues of TREM2-TG mice than in WT mice. In addition, bone marrow-derived hematopoietic stem cells (HSCs) of TREM2-TG mice (TG-HSCs) successfully differentiated into NK cells in vitro, with a higher yield from TG-HSCs than from WT-HSCs. In contrast, TREM2 signaling inhibition by TREM2-Ig or a phosphatidylinositol 3-kinase (PI3K) inhibitor affected the expression of the NK cell receptor repertoire and decreased the expression levels of NK cell-associated genes, resulting in significant impairment of NK cell differentiation. Moreover, in melanoma-bearing WT mice, injection of bone marrow cells from TREM2-TG mice exerted greater antitumor effects than that with cells from WT control mice.Conclusions: Collectively, our data clearly showed that TREM2 promoted NK cell development and tumor regression, suggesting TREM2 as a new candidate for cancer immunotherapy.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hwa-Youn Lee ◽  
Eun-Hee Lee ◽  
Jawoon Yi ◽  
Kon-Young Ji ◽  
Su-Man Kim ◽  
...  

Abstract Background Triggering receptor expressed on myeloid cells 2 (TREM2) signaling is considered to regulate anti-inflammatory responses in macrophages, dendritic cell maturation, osteoclast development, induction of obesity, and Alzheimer’s disease pathogenesis. However, little is known regarding the effect of TREM2 on natural killer (NK) cells. Results Here, we demonstrated for the first time that CD3−CD122+NK1.1+ precursor NK (pNK) cells expressed TREM2 and their population increased in TREM2-overexpressing transgenic (TREM2-TG) mice compared with that in female C57BL/6 J wild type (WT) mice. Both NK cell-activating receptors and NK cell-associated genes were expressed at higher levels in various tissues of TREM2-TG mice than in WT mice. In addition, bone marrow-derived hematopoietic stem cells (HSCs) of TREM2-TG mice (TG-HSCs) successfully differentiated into NK cells in vitro, with a higher yield from TG-HSCs than from WT-HSCs. In contrast, TREM2 signaling inhibition by TREM2-Ig or a phosphatidylinositol 3-kinase (PI3K) inhibitor affected the expression of the NK cell receptor repertoire and decreased the expression levels of NK cell-associated genes, resulting in significant impairment of NK cell differentiation. Moreover, in melanoma-bearing WT mice, injection of bone marrow cells from TREM2-TG mice exerted greater antitumor effects than that with cells from WT control mice. Conclusions Collectively, our data clearly showed that TREM2 promoted NK cell development and tumor regression, suggesting TREM2 as a new candidate for cancer immunotherapy.


Blood ◽  
2006 ◽  
Vol 108 (1) ◽  
pp. 246-252 ◽  
Author(s):  
John O. Richards ◽  
Xing Chang ◽  
Bradley W. Blaser ◽  
Michael A. Caligiuri ◽  
Pan Zheng ◽  
...  

Natural-killer (NK)-cell dysfunction and IFN-γ deficiencies have been associated with increased incidence of both malignancy and infection. The immunologic basis of NK-cell defects in cancer-bearing hosts has not been extensively studied. Here, we demonstrate that multiple lineages of tumors, including thymoma, breast cancer, colon cancer, and melanoma cell lines, interrupt functional maturation during NK-cell development in the bone marrow. The immature NK cells in the periphery of tumor-bearing mice had impaired IFN-γ production but seemingly normal cytotoxicity. T cells are not involved in this NK maturation arrest, because T-cell depletion did not restore NK-cell development. Moreover, the extent of tumor-cell infiltration into the bone marrow does not correlate with defective NK maturation. Interestingly, the defect was associated with a significant reduction in the IL-15Rα+ cells in the non-T, non-NK compartment of bone marrow cells and restored by overexpression of IL-15. Our data demonstrate that tumor growth can impede functional maturation of NK cells, most likely by interrupting the requisite IL-15 signaling pathway. (Blood. 2006;108:246-252)


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1024-1030 ◽  
Author(s):  
Sungjin Kim ◽  
Yun-Jeong Song ◽  
Darryl A. Higuchi ◽  
Hyunseok P. Kang ◽  
Jennifer R. Pratt ◽  
...  

AbstractNatural killer (NK) cell development in the bone marrow is not fully understood. Following lineage commitment, these cells appear to advance through a series of developmental stages that are beginning to be characterized. We previously reported a selective deficiency of NK cells in a C57BL/6 mouse with a transgenic construct consisting of the cDNA for the Ly49A major histocompatibility complex (MHC) class 1–specific inhibitory receptor driven by the granzyme A gene. This mouse has few NK cells in peripheral tissues with relative preservation of other immune cells, including T and B cells. Herein we demonstrate that these mice have an accumulation of NK cells with an immature phenotype in the bone marrow, consistent with a block at a previously proposed stage in normal NK-cell development. The phenotype is associated with transgenic insertion into Atf2, the gene for the basic leucine zipper (bZIP) transcription factor family member ATF-2. Although analysis of Atf2-null NK cells shows no defect, the transgenic mice express abnormal truncated Atf2 transcripts that may mediate a repressor effect because ATF2 can heterodimerize with other bZIP molecules. The defect is cell intrinsic, suggesting that certain bZIP molecules play significant roles in NK-cell development.


2018 ◽  
Author(s):  
Alberto J. Millan ◽  
Sonny R. Elizaldi ◽  
Eric M. Lee ◽  
Jeffrey O. Aceves ◽  
Deepa Murugesh ◽  
...  

AbstractNatural killer (NK) cells are specialized lymphocytes with the innate ability to eliminate virally infected and cancerous cells, but the mechanisms that control NK cell development and cytotoxicity are incompletely understood. We identified novel roles for Sclerostin domain containing-1 (Sostdc1) in NK cell development and function. Sostdc1-knockout (Sostdc1-/-) mice display a progressive accumulation of transitional NK cells (CD27+CD11b+, tNK) with age, indicating a partial developmental block. The Ly49 repertoire on NK cells in Sostdc1-/- mice is also changed. Lower frequencies of Sostdc1-/- splenic tNKs express inhibitory Ly49G2 receptors, but higher frequencies express activating Ly49H and Ly49D receptors. However, the frequencies of Ly49I+, G2+, H+ and D+ populations were universally decreased at the most mature (CD27-CD11b+, mNK) stage. We hypothesized that the Ly49 repertoire in Sostdc1-/- mice would correlate with NK killing ability, and observed that Sostdc1-/- NK cells are hyporesponsive against MHC-I-deficient cell targets in vitro and in vivo, despite higher CD107a surface levels and similar IFNγ expression to controls. Consistent with Sostdc1’s known role in the regulation of Wnt signaling, high levels of Wnt coactivators Tcf7 and Lef1 were observed in Sostdc1-/- NK cells. Expression of the NK development gene Id2 was decreased in Sostdc1-/- iNK and tNK cells, but we observed no changes in Eomes and Tbx21 expression. Reciprocal bone marrow transplant experiments showed that Sostdc1 regulates NK cell maturation and expression of Ly49 receptors in a cell-extrinsic fashion from both non-hematopoietic and hematopoietic sources. Taken together, these data support a role for Sostdc1 in the regulation of NK cell maturation, and NK cell cytotoxicity, and identify potential NK cell niches.Summary of ResultsSostdc1-/- mice display a partial block between the tNK and mNK developmental stages.Sostdc1 influences the Ly49 receptor repertoire on NK cells.NK cells in Sostdc1-/- mice display impaired ability to kill β2m-/- target cells.Sostdc1-/- NK cell subsets express high levels of Wnt coactivators Tcf7 and Lef1.Id2 expression is decreased in iNK and tNK cells in the absence of Sostdc1.Bone marrow transplantation experiments demonstrate cell-extrinsic regulation of NK cell maturation by Sostdc1 in both non-hematopoietic (stromal) and hematopoietic cells.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Mamiko Noda ◽  
Yoshiki Omatsu ◽  
Tatsuki Sugiyama ◽  
Shinya Oishi ◽  
Nobutaka Fujii ◽  
...  

Abstract Natural killer (NK) cells are granular lymphocytes that are generated from hematopoietic stem cells and play vital roles in the innate immune response against tumors and viral infection. Generation of NK cells is known to require several cytokines, including interleukin-15 (IL-15) and Fms-like tyrosine kinase 3 ligand, but not IL-2 or IL-7. Here we investigated the in vivo role of CXC chemokine ligand-12 (CXCL12) and its primary receptor CXCR4 in NK-cell development. The numbers of NK cells appeared normal in embryos lacking CXCL12 or CXCR4; however, the numbers of functional NK cells were severely reduced in the bone marrow, spleen, and peripheral blood from adult CXCR4 conditionally deficient mice compared with control animals, probably resulting from cell-intrinsic CXCR4 deficiency. In culture, CXCL12 enhanced the generation of NK cells from lymphoid-primed multipotent progenitors and immature NK cells. In the bone marrow, expression of IL-15 mRNA was considerably higher in CXCL12-abundant reticular (CAR) cells than in other marrow cells, and most NK cells were in contact with the processes of CAR cells. Thus, CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adults, and CAR cells might function as a niche for NK cells in bone marrow.


Blood ◽  
2020 ◽  
Vol 135 (9) ◽  
pp. 629-637
Author(s):  
Michael T. Lam ◽  
Emily M. Mace ◽  
Jordan S. Orange

Abstract Natural killer cell deficiencies (NKDs) are an emerging phenotypic subtype of primary immune deficiency. NK cells provide a defense against virally infected cells using a variety of cytotoxic mechanisms, and patients who have defective NK cell development or function can present with atypical, recurrent, or severe herpesviral infections. The current pipeline for investigating NKDs involves the acquisition and clinical assessment of patients with a suspected NKD followed by subsequent in silico, in vitro, and in vivo laboratory research. Evaluation involves initially quantifying NK cells and measuring NK cell cytotoxicity and expression of certain NK cell receptors involved in NK cell development and function. Subsequent studies using genomic methods to identify the potential causative variant are conducted along with variant impact testing to make genotype-phenotype connections. Identification of novel genes contributing to the NKD phenotype can also be facilitated by applying the expanding knowledge of NK cell biology. In this review, we discuss how NKDs that affect NK cell cytotoxicity can be approached in the clinic and laboratory for the discovery of novel gene variants.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Isabel Ohs ◽  
Maries van den Broek ◽  
Kathrin Nussbaum ◽  
Christian Münz ◽  
Sebastian J. Arnold ◽  
...  

Abstract Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain (γc)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice with targeted γc deletion. Herein we identify an alternative pathway of NK-cell development driven by the proinflammatory cytokine IL-12, which can occur independently of γc-signalling. In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the emergence of a population of CD122+CD49b+ cells by targeting NK-cell precursors (NKPs) in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-wide analyses and their ability to eliminate tumour cells. Rather than using the conventional pathway of NK-cell development, IL-12-driven CD122+CD49b+ cells remain confined to a NK1.1lowNKp46low stage, but differentiate into NK1.1+NKp46+ cells in the presence of γc-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell lymphopoiesis bypassing steady-state γc-signalling.


Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2470-2477 ◽  
Author(s):  
Il-Kyoo Park ◽  
Chiara Giovenzana ◽  
Tiffany L. Hughes ◽  
Jianhua Yu ◽  
Rossana Trotta ◽  
...  

Interleukin-15 (IL-15) is essential for natural killer (NK) cell differentiation. In this study, we assessed whether the receptor tyrosine kinase Axl and its ligand, Gas6, are involved in IL-15–mediated human NK differentiation from CD34+ hematopoietic progenitor cells (HPCs). Blocking the Axl-Gas6 interaction with a soluble Axl fusion protein (Axl-Fc) or the vitamin K inhibitor warfarin significantly diminished the absolute number and percentage of CD3−CD56+ NK cells derived from human CD34+ HPCs cultured in the presence of IL-15, probably resulting in part from reduced phosphorylation of STAT5. In addition, CD3−CD56+ NK cells derived from culture of CD34+ HPCs with IL-15 and Axl-Fc had a significantly diminished capacity to express interferon-γ or its master regulator, T-BET. Culture of CD34+ HPCs in the presence of c-Kit ligand and Axl-Fc resulted in a significant decrease in the frequency of NK precursor cells responding to IL-15, probably the result of reduced c-Kit phosphorylation. Collectively, our data suggest that the Axl/Gas6 pathway contributes to normal human NK-cell development, at least in part via its regulatory effects on both the IL-15 and c-Kit signaling pathways in CD34+ HPCs, and to functional NK-cell maturation via an effect on the master regulatory transcription factor T-BET.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2464-2464
Author(s):  
Carissa Dege ◽  
Katherine H Fegan ◽  
J Philip Creamer ◽  
Melissa M Berrien-Elliott ◽  
Stephanie A. Luff ◽  
...  

Natural killer (NK) cells are innate immune cells that target and kill virally infected and malignant cells, making them an attractive target for adoptive immunotherapies. An alternative to donor-derived NK cells is the use of human pluripotent stem cell (hPSC)-derived NK cells, as a renewable "off the shelf" product. Previous studies have identified hPSC-derived NK cells as potently cytotoxic, compared to donor-derived NK cells. As the differentiation of hPSCs mimics early embryonic development, this raises the possibility that hPSC-derived NK cells are ontogenically distinct from adult NK cells. NK cells are present during embryonic hematopoiesis, but their ontogenic origins are poorly understood. NK cells are thought to arise from a common lymphoid progenitor (CLP), lying downstream of hematopoietic stem cells (HSCs), but evidence exists that NK cells may arise from HSC-independent progenitors as NK cells are found in the early murine fetal liver, and NK cell progenitors are found in the early human yolk sac (YS). In this study, we investigated the emergence of NK cells during murine and human embryonic hematopoietic development. During murine embryogenesis, overlapping HSC-independent waves of hematopoietic progenitors occur in the YS that give rise to hematopoietic cells prior to HSC emergence at E10.5. The "primitive" wave occurs at E7.5, followed by an "erythro-myeloid progenitor" (EMP) wave at E8.5. To study NK cell potential during murine YS hematopoiesis, we cultured total YS and sorted hematopoietic progenitors under NK cell promoting conditions. Strikingly, we found that the YS contains NK cell potential. Further, sorted E8.5 kit+CD41+CD16/32+ EMP progenitors, but not primitive hematopoietic progenitors, contain robust NK cell potential. EMP-derived NK (EMP-NK) cells were larger and more granular than adult CLP-derived NK cells. Additionally, NK cells from the E15.5 fetal liver were larger and more granular than NK cells from the adult spleen. Both EMP-NK cells and E15.5 fetal liver NK cells had a more robust degranulation response than their HSC-derived counterparts. Together, these data support the concept that EMP in the YS serve as an initial source of physiologically relevant, functional embryonic NK cells that are phenotypically and functionally distinct from adult NK cells. As hPSC-derived NK cells were described as potently cytotoxic, and we observed that murine HSC-independent NK cells robustly degranulate, we next asked whether NK cell development from hPSCs recapitulates that found in the murine embryo. We have demonstrated previously, using a stage-specific WNT signal manipulation approach that specifies ontogenically distinct hematopoietic progenitors, that hPSC-derived NK cell progenitors can be obtained from two distinct progenitors in vitro. In this study, we sought to better understand the development and function of these two NK cell populations. Stage-specific WNT inhibition (WNTi) during hPSC mesodermal patterning yielded extra-embryonic-like HOXA-/low CD34+ populations that possessed erythroid, myeloid and NK cell potential, but lacked T cell potential. The CD56+ NK cells in these cultures co-emerged with CD15+ granulocytes, indicating that these NK cells may arise from a committed myeloid progenitor. In contrast, HOXA+ CD34+ cells, obtained in a WNT-dependent (WNTd) manner, harbored erythro-myelo-lymphoid multi-lineage potential, including NK cell potential. Phenotypically, WNTi-NK cells were larger, more granular and more mature, compared to WNTd-NK and cord blood (CB)-derived NK cells, reminiscent of murine EMP-NK cells. Further, following multiple stimulation assays, WNTi-NK and WNTd-NK cells had different effector biases. WNTi-NK cells are biased for potent cytotoxic degranulation and exhibited superior cell killing in an ADCC assay. In contrast, WNTd-NK and CB-NK had an attenuated degranulation response, but robustly produced inflammatory cytokines. Finally, RNA-seq analysis demonstrated that WNTd-NK cells were most similar to CB-NK cells. Collectively, these studies identify for the first time that the murine EMP harbor NK cell potential, and these NK cells are functionally unique. These observations raise new questions regarding which ontogenic origin of NK cells should be used in future hPSC-derived adoptive immunotherapy strategies. Disclosures Fehniger: Cyto-Sen Therapeutics: Consultancy; Horizon Pharma PLC: Other: Consultancy (Spouse). Palis:Rubius Therapeutics: Consultancy.


1998 ◽  
Vol 187 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Marie-Josée Guimond ◽  
Baoping Wang ◽  
B. Anne Croy

A large, transient population of natural killer (NK) cells appears in the murine uterine mesometrial triangle during pregnancy. Depletion of uterine (u) NK cells, recently achieved using gene-ablated and transgenic mice, results in pathology. Pregnancies from matings of homozygous NK and T cell–deficient tgε26 mice have <1% of normal uNK cell frequency, no development of an implantation site–associated metrial gland, and an edematous decidua with vascular pathology that includes abnormally high vessel walls/lumens ratios. Fetal loss of 64% occurs midgestation and placentae are small. None of these features are seen in pregnant T cell–deficient mice. To confirm the role of the NK cell deficiency in these reproductive deficits, transplantation of tgε26 females was undertaken using bone marrow from B and T cell–deficient scid/scid donors. Engrafted pregnant females have restoration of the uNK cell population, induced metrial gland differentiation, reduced anomalies in the decidua and decidual blood vessels, increased placental sizes, and restoration of fetal viability at all gestational days studied (days 10, 12, and 14). Thus, uNK cells appear to have critical functions in pregnancy that promote decidual health, the appropriate vascularization of implantation sites, and placental size.


Sign in / Sign up

Export Citation Format

Share Document