scholarly journals Acidified Pepsin Promotes Laryngeal Precancerosis by Upregulating H+/K+-ATPase and Activating Mitophagy in Laryngeal Epithelial Cells

Author(s):  
Ke-Jia Cheng ◽  
Qiong Xu ◽  
Zhi-Mei Li ◽  
Shui-Hong Zhou ◽  
Yang-Yang Bao ◽  
...  

Abstract Background: Although laryngopharyngeal reflux (LPR) has been implicated in various upper aerodigestive tract and laryngeal diseases, the underlying mechanisms remain elusive. In this study, we investigated the role of gastric acidified pepsin in laryngeal precancerosis. Results: Acidified pepsin (pH=3) enhanced the growth and survival of mouse laryngeal epithelial cells in vitro and promoted laryngeal mucosal thickening and laryngeal epithelial cell growth in vivo. Furthermore, acidified pepsin promoted autophagy/mitophagy induction, accompanied by a significant decrease in mitochondrial membrane potential (MMP). Inhibition of autophagy by chloroquine abolished the ability of acidified pepsin to promote mitophagy and cell growth in laryngeal epithelial cells. Additionally, chloroquine promoted cell apoptosis and further reduced MMP in laryngeal epithelial cells treated with acidified pepsin. The expression levels of pepsin and H+/K+-ATPase α and β subunits in 31 human laryngeal mucosa specimens were 51.6%, 48.4%, and 48.4%, respectively. Importantly, the pepsin level was correlated with the H+/K+-ATPase β subunit level. H+/K+-ATPase upregulation in laryngeal epithelial cells in response to acidified pepsin was essential for the mitophagy-promoting effect of acidified pepsin. H+/K+-ATPase knockout or inhibition further reduced MMP in the presence of acidified pepsin. Conclusions: Our findings suggest that in an acidic environment, pepsin promotes laryngeal epithelial cell growth and survival by upregulating H+/K+-ATPase and activating mitophagy, potentially leading to laryngeal precancerosis.

2020 ◽  
Author(s):  
Ke-Jia Cheng ◽  
Qiong Xu ◽  
Zhi-Mei Li ◽  
Shui hong Zhou ◽  
Yang-Yang Bao ◽  
...  

Abstract Background: Although laryngopharyngeal reflux (LPR) has been implicated in various upper aerodigestive tract and laryngeal diseases, the underlying mechanisms remain elusive. In this study, we investigated the role of gastric acidified pepsin in laryngeal precancerosis. Methods: The in vitro and in vivo effects of acidified pepsin on H+/K+-ATPase expression and autophagy/mitophagy induction in mouse laryngeal epithelial cells were assessed by hematoxylin and eosin staining, immunohistochemistry, CCK-8 assay, flow cytometry, Western blotting, and quantitative real-time PCR. Additionally, the levels of pepsin and H+/K+-ATPase α and β subunits in 31 human laryngeal mucosal specimens were assessed by immunohistochemical staining. Results: Acidified pepsin (pH=3) enhanced the growth and survival of mouse laryngeal epithelial cells in vitro and promoted laryngeal mucosal thickening and laryngeal epithelial cell growth in vivo. Furthermore, acidified pepsin promoted autophagy/mitophagy induction, accompanied by a significant decrease in mitochondrial membrane potential (MMP). Inhibition of autophagy by chloroquine abolished the ability of acidified pepsin to promote mitophagy and cell growth in laryngeal epithelial cells. Additionally, chloroquine promoted cell apoptosis and further reduced MMP in laryngeal epithelial cells treated with acidified pepsin. The expression levels of pepsin and H+/K+-ATPase α and β subunits in 31 human laryngeal mucosa specimens were 51.6%, 48.4%, and 48.4%, respectively. Importantly, the pepsin level was correlated with the H+/K+-ATPase β subunit level. H+/K+-ATPase upregulation in laryngeal epithelial cells in response to acidified pepsin was essential for the mitophagy-promoting effect of acidified pepsin. H+/K+-ATPase knockout or inhibition further reduced MMP in the presence of acidified pepsin. Conclusions: Our findings suggest that in an acidic environment, pepsin promotes laryngeal epithelial cell growth and survival by upregulating H+/K+-ATPase and activating mitophagy, potentially leading to laryngeal precancerosis.


2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


BioMetals ◽  
2014 ◽  
Vol 27 (5) ◽  
pp. 857-874 ◽  
Author(s):  
Anne Blais ◽  
Cuibai Fan ◽  
Thierry Voisin ◽  
Najat Aattouri ◽  
Michel Dubarry ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 758-758
Author(s):  
◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P Chu ◽  
Jaras Marcus ◽  
...  

Abstract Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.


2019 ◽  
Vol 244 (7) ◽  
pp. 554-564 ◽  
Author(s):  
Ana Klisuric ◽  
Benjamin Thierry ◽  
Ludivine Delon ◽  
Clive A Prestidge ◽  
Rachel J Gibson

M cells are an epithelial cell population found in the follicle-associated epithelium overlying gut-associated lymphoid tissues. They are specialized in the transcytosis of luminal antigens. Their transcytotic capacity and location in an immunocompetent environment has prompted the study of these cells as possible targets for oral drug delivery systems. Currently, the models most commonly used to study M cells are restricted to in vivo experiments conducted in mice, and in vitro studies conducted in models comprised either of primary epithelial cells or established cell lines of murine or human origin. In vitro models of the follicle-associated epithelium can be constructed in several ways. Small intestinal Lgr5+ stem cells can be cultured into a 3D organoid structure where M cells are induced with RANKL administration. Additionally, in vitro models containing an “M cell-like” population can be obtained through co-culturing intestinal epithelial cells with cells of lymphocytic origin to induce the M cell phenotype. The evaluation of the efficiency of the variations of these models and their relevance to the in vivo human system is hampered by the lack of a universal M cell marker. This issue has also hindered the advancement of M cell-specific targeting approaches aimed at improving the bioavailability of orally administered compounds. This critical review discusses the different approaches utilized in the literature to identify M cells, their efficiency, reliability and relevance, in the context of commonly used models of the follicle-associated epithelium. The outcome of this review is a clearly defined and universally recognized criteria for the assessment of the relevance of models of the follicle-associated models currently used. Impact statement The study of M cells, a specialized epithelial cell type found in the follicle-associated epithelium, is hampered by the lack of a universal M cell marker. As such, many studies lack reliable and universally recognized methods to identify M cells in their proposed models. As a result of this it is difficult to ascertain whether the effects observed are due to the presence of M cells or an unaccounted variable. The outcome of this review is the thorough evaluation of the many M cell markers that have been used in the literature thus far and a proposed criterion for the identification of M cells for future publications. This will hopefully lead to an improvement in the quality of future publications in this field.


The Analyst ◽  
2014 ◽  
Vol 139 (13) ◽  
pp. 3206-3218 ◽  
Author(s):  
Roland Thuenauer ◽  
Enrique Rodriguez-Boulan ◽  
Winfried Römer

Novelin vitromodels of epithelia in which thein vivomicroenvironment of epithelial cells is precisely reconstituted can be realised with microfluidic biochips.


2012 ◽  
Vol 303 (3) ◽  
pp. G356-G366 ◽  
Author(s):  
Steven H. Young ◽  
Nora Rozengurt ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt

We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser916, an autophosphorylation site. An increase in PKD1 phosphorylation at Ser916 was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser916 was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.


1992 ◽  
Vol 4 (5) ◽  
pp. 573 ◽  
Author(s):  
JK Thibodeaux ◽  
MW Myers ◽  
LL Goodeaux ◽  
Y Menezo ◽  
JD Roussel ◽  
...  

Three experiments were conducted to evaluate the effects of culture medium and incubation temperature on bovine uterine and oviduct epithelial cell growth, so that the most efficient combination could then be used to develop a co-culture system for bovine embryos. In the first experiment, uterine and oviduct epithelial cells at either the second or third subpassage were incubated for 8 days at 37 degrees C with 5% CO2 in Tissue Culture Medium-199, CMRL-1066, Minimal Essential Medium, Menezo's B2 or Ham's F-12 medium. In addition to plotting growth curves of cell populations, the cell cycle was monitored for 8 days by flow cytometry. Uterine and oviduct epithelial cells incubated in CMRL-1066 exhibited the highest growth rates during the 8-day culture period. However, there were no differences in cell cycle analysis among treatment groups during the incubation period. In the second experiment, CMRL-1066 medium was used to evaluate growth and proliferation of uterine and oviduct epithelial cells incubated at 37 degrees C or 39 degrees C; temperature had no significant effect on growth rates or proliferation rates for either uterine or oviduct cells during the 8-day incubation. In the third experiment, the more promising culture media for epithelial cell culture studies were chosen for in vitro maturation and subsequent in vitro fertilization (IVF) of bovine oocytes. Early cleavage-stage embryos produced by IVF procedures were subsequently cultured in vitro for 7 days in medium alone or with oviduct epithelial cells. In this study, the culture medium did not influence fertilization or cleavage rates. However, more embryos co-cultured with oviduct epithelial cells were considered viable after 7 days of incubation compared with embryos incubated in medium alone. These results indicate that various incubation conditions can influence the growth of bovine uterine and oviduct epithelial cells in vitro. However, in spite of changes in cell growth patterns, there does not appear to be a change in their embryotropic capabilities in vitro.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1522-1522
Author(s):  
Franziska Jundt ◽  
Rolf Schwarzer ◽  
Martin Kaiser ◽  
Oezlem Acikgoez ◽  
Ulrike Heider ◽  
...  

Abstract Notch pathway inhibition in multiple myeloma (MM) cells is a promising new therapeutic approach since it controls myeloma cell growth as we previously demonstrated (Blood. 2004; 103:3511–3515). Notch signaling is involved in the tight interactions between myeloma cells and the bone marrow microenvironment and induces tumor cell growth in MM. We provided evidence that Notch receptors are expressed on MM cells and that Notch ligands on MM and bone marrow stromal cells activate Notch signaling through homotypic as well as heterotypic interactions in MM cells. In this study, we analyzed whether Notch signaling might be activated in osteoclasts, which express Notch receptors but not the ligands. To that end, we co-cultured MM cells and human osteoclasts, which were generated from mononuclear hematopoietic precursors of healthy donors using in vitro RANKL/M-CSF stimulation. Co-cultivation specifically activated Notch in osteoclasts and induced osteoclast activity as measured by mRNA expression of the tartrate-resistant acid phosphatase. The novel Notch pathway inhibitor, so called γ-secretase inhibitor 1 (GSI1), that we recently identified by structural comparison of known inhibitors with unknown compounds by data bank screening, specifically inhibited Notch signaling in osteoclasts and blocked their activity in this co-cultivation assay. In addition, GSI1 induced apoptosis in osteoclasts in higher concentrations. We suggest from our data that GSI treatment controls MM cell growth and concomitantly aberrant osteoclast activity in vitro and possibly in vivo, that is under current investigation. We further hypothesized that GSI1 can be combined with the proteasome inhibitor bortezomib, which has been known to have in vitro and in vivo activity against MM. We evaluated the activity of the combination of GSI1 and bortezomib against MM cell growth and survival. Proliferation of MM cell lines treated with GSI, bortezomib and their combination was determined by CellTiter-Glo® luminescent cell viability assay. AnnexinV-FITC/PI staining and cleaved poly (ADP-ribose) polymerase (PARP) staining were used to determine the degree of apoptosis. Although treatment of MM cell lines (OPM2, LP1) with either drug alone significantly inhibited proliferation and induced apoptosis with concentrations of GSI1 (30–60 μM) and bortezomib (1–4 nM), the combination resulted in synergistic inhibition of cell growth and survival. Our data suggest that combination of GSI1 and bortezomib is a rational novel treatment option in MM that simultaneously targets different proliferative and anti-apoptotic pathways. Whether this combination might also have synergistic activity against aberrant osteoclast activity in MM will be further investigated.


2002 ◽  
Vol 283 (6) ◽  
pp. L1315-L1321 ◽  
Author(s):  
Yingjian You ◽  
Edward J. Richer ◽  
Tao Huang ◽  
Steven L. Brody

Highly regulated programs for airway epithelial cell proliferation and differentiation during development and repair are often disrupted in disease. These processes have been studied in mouse models; however, it is difficult to isolate and identify epithelial cell-specific responses in vivo. To investigate these processes in vitro, we characterized a model for primary culture of mouse tracheal epithelial cells. Small numbers of cells seeded at low density (7.5 × 104 cells/cm2) rapidly proliferated and became polarized. Subsequently, supplemented media and air-liquid interface conditions resulted in development of highly differentiated epithelia composed of ciliated and nonciliated cells with gene expression characteristic of native airways. Genetically altered or injured mouse tracheal epithelial cells also reflected in vivo patterns of airway epithelial cell gene expression. Passage of cells resulted in continued proliferation but limited differentiation after the first passage, suggesting that transit-amplifying cell populations were present but with independent programs for proliferation and differentiation. This approach provides a high-fidelity in vitro model for evaluation of gene regulation and expression in mouse airway epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document