scholarly journals Post-Genotyping Optimization of Dataset Formation Could Affect Genetic Diversity Parameters: An Example of Analyses with Alpine Goat Breeds

Author(s):  
Neža Pogorevc ◽  
Mojca Simčič ◽  
Negar Khayatzadeh ◽  
Johann Soelkner ◽  
Beate Berger ◽  
...  

Abstract BackgroundLocal breeds retained unique genetic variability important for adaptive potential especially in light of challenges related to climate change. One objective was to perform, for the first time, a genome-wide diversity characterization using Illumina GoatSNP50 BeadChip of autochthonous Drežnica goat breed from Slovenia, five and one local breeds from neighboring Austria and Italy, respectively. For optimal conservation and breeding programs of endangered local breeds, it is important to detect past admixture events and strive for preservation of purebred representatives of each breed with low or without admixture. In the second objective, we hence investigated the effect of inclusion or exclusion of outliers from datasets on genetic diversity and population structure parameters.ResultsDistinct genetic origin of the Drežnica goat was demonstrated having closest nodes to Austrian and Italian breeds. A phylogenetic study of these breeds with other goat breeds having SNP data available in the DRYAD repository positioned them in the alpine, European and global context. Swiss breeds clustered with cosmopolitan alpine breeds and were closer to French and Spanish breeds. On the other hand, the Drežnica goat, Austrian and Italian breeds were closer to Turkish breeds. Datasets where outliers were excluded affected estimates of genetic diversity parameters within the breed and increased the pairwise genetic distances between most of the breeds. Alpine breeds, including Drežnica, Austrian and Italian goats analyzed here, still exhibit relatively high levels of genetic variability, homogeneous genetic structure and strong geographical partitioning.ConclusionsGenetic diversity analyses revealed that the Slovenian Drežnica goat has a distinct genetic identity and is closely related to the neighboring Austrian and Italian alpine breeds. These results expand our knowledge on phylogeny of goat breeds from easternmost part of the European Alps. The here employed outlier test and datasets optimization approaches provided an objective and statistically powerful tool for removal of admixed outliers. Importance of this test in selecting the representatives of each breed is warranted to obtain more objective diversity parameters and phylogenetic analysis. Such parameters are often the basis of the breeding and management programs and therefore important for preserving genetic variability and uniqueness of local rare breeds.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Neža Pogorevc ◽  
Mojca Simčič ◽  
Negar Khayatzadeh ◽  
Johann Sölkner ◽  
Beate Berger ◽  
...  

Abstract Background Local breeds retained unique genetic variability important for adaptive potential especially in light of challenges related to climate change. Our first objective was to perform, for the first time, a genome-wide diversity characterization using Illumina GoatSNP50 BeadChip of autochthonous Drežnica goat breed from Slovenia, and five and one local breeds from neighboring Austria and Italy, respectively. For optimal conservation and breeding programs of endangered local breeds, it is important to detect past admixture events and strive for preservation of purebred representatives of each breed with low or without admixture. In the second objective, we hence investigated the effect of inclusion or exclusion of outliers from datasets on genetic diversity and population structure parameters. Results Distinct genetic origin of the Drežnica goat was demonstrated as having closest nodes to Austrian and Italian breeds. A phylogenetic study of these breeds with other goat breeds having SNP data available in the DRYAD repository positioned them in the alpine, European and global context. Swiss breeds clustered with cosmopolitan alpine breeds and were closer to French and Spanish breeds. On the other hand, the Drežnica goat, Austrian and Italian breeds were closer to Turkish breeds. Datasets where outliers were excluded affected estimates of genetic diversity parameters within the breed and increased the pairwise genetic distances between most of the breeds. Alpine breeds, including Drežnica, Austrian and Italian goats analyzed here, still exhibit relatively high levels of genetic variability, homogeneous genetic structure and strong geographical partitioning. Conclusions Genetic diversity analyses revealed that the Slovenian Drežnica goat has a distinct genetic identity and is closely related to the neighboring Austrian and Italian alpine breeds. These results expand our knowledge on phylogeny of goat breeds from easternmost part of the European Alps. The here employed outlier test and datasets optimization approaches provided an objective and statistically powerful tool for removal of admixed outliers. Importance of this test in selecting the representatives of each breed is warranted to obtain more objective diversity parameters and phylogenetic analysis. Such parameters are often the basis of breeding and management programs and are therefore important for preserving genetic variability and uniqueness of local rare breeds.


2021 ◽  
Author(s):  
Alexandra Ficht ◽  
Robert W. Bruce ◽  
Davoud Torkamaneh ◽  
Christopher Grainger ◽  
Milad Eskandari ◽  
...  

Abstract Soybean (Glycine max (L.) Merr) is a crop of global importance for both human and animal consumption, which was domesticated in China more than 6000 years ago. A concern about losing genetic diversity as a result of decades of breeding has been expressed by soybean researchers. In order to develop new cultivars, it is critical for breeders to understand the genetic variability present for traits of interest in their program germplasm. Sucrose concentration is becoming an increasingly important trait for the production of soy-food products. The objective of this study was to use a genome-wide association study (GWAS) to identify putative QTL for sucrose concentration in soybean seed. A GWAS panel consisting of 266 historic and current soybean accessions was genotyped with 76k genotype-by-sequencing (GBS) SNP data and phenotyped in four field locations in Ontario (Canada) from 2015 to 2017. Seven putative QTL were identified on chromosomes 1, 6, 8, 9, 10, 13 and 14. A key gene related to sucrose synthase (Glyma.06g182700) was found to be associated with the QTL found on chromosome 6. This information will facilitate efforts to increase the available genetic variability for sucrose concentration in soybean breeding programs and develop new and improved high-sucrose soybean cultivars suitable for the soy-food industry.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Gabriele Senczuk ◽  
Salvatore Mastrangelo ◽  
Paolo Ajmone-Marsan ◽  
Zsolt Becskei ◽  
Paolo Colangelo ◽  
...  

Abstract Background During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. Results Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. Conclusions This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54997 ◽  
Author(s):  
Jessica L. Petersen ◽  
James R. Mickelson ◽  
E. Gus Cothran ◽  
Lisa S. Andersson ◽  
Jeanette Axelsson ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0154353 ◽  
Author(s):  
Carina Visser ◽  
Simon F. Lashmar ◽  
Este Van Marle-Köster ◽  
Mario A. Poli ◽  
Daniel Allain

2020 ◽  
Vol 49 (6) ◽  
pp. 1083-1092
Author(s):  
S Goitom ◽  
M.G. Gicheha ◽  
F.K. Njonge ◽  
N Kiplangat

Indigenous cattle play a vital role in subsistence and livelihood of pastoral producers in Eritrea. In order to optimally utilize and conserve these valuable indigenous cattle genetic resources, the need to carry out an inventory of their genetic diversity was recognized. This study assessed the genetic variability, population structure and admixture of the indigenous cattle populations (ICPs) of Eritrea using a genotype by sequencing (GBS) approach. The authors genotyped 188 animals, which were sampled from 27 cattle populations in three diverse agro-ecological zones (western lowlands, highlands and eastern lowlands). The genome-wide analysis results from this study revealed genetic diversity, population structure and admixture among the ICPs. Averages of the minor allele frequency (AF), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) were 0.157, 0.255, 0.218, and -0.089, respectively. Nei’s genetic distance (Ds) between populations ranged from 0.24 to 0.27. Mean population differentiation (FST) ranged from 0.01 to 0.30. Analysis of molecular variance revealed high genetic variation between the populations. Principal component analysis and the distance-based unweighted pair group method and arithmetic mean analyses revealed weak substructure among the populations, separating them into three genetic clusters. However, multi-locus clustering had the lowest cross-validation error when two genetically distinct groups were modelled. This information about genetic diversity and population structure of Eritrean ICPs provided a basis for establishing their conservation and genetic improvement programmes. Keywords: genetic variability, molecular characterization, population differentiation


2018 ◽  
Vol 16 (5) ◽  
pp. 469-477 ◽  
Author(s):  
Georgios F. Tsanakas ◽  
Photini V. Mylona ◽  
Katerina Koura ◽  
Anthoula Gleridou ◽  
Alexios N. Polidoros

AbstractThe Greek lentil landrace ‘Eglouvis’ is cultivated continuously at the Lefkada island for more than 400 years. It has great taste, high nutritional value and high market price. In the present study, we used morphological and molecular markers to estimate genetic diversity within the landrace. Morphological analysis was based on characteristics of the seed. Molecular analysis was performed using simple sequence repeat (SSR) molecular markers in a high-resolution melting (HRM) approach. ‘Samos’ and ‘Demetra’, two of the most widely cultivated commercial lentil varieties in Greece, were used for comparisons. Morphological analysis was performed with 584 seeds randomly selected from a lot. Analysis of seed dimensions and colour distributed the samples in different categories and highlighted the phenotypic variability in ‘Eglouvis’ lentil seeds. Genetic variability was estimated from 91 individual DNA samples with 11 SSR markers using HRM analysis. Genotyping was based upon the shape of the melting curves and the difference plots; all polymerase chain reaction products were also run on agarose gels. Genetic distances of individuals and principal coordinates analysis suggested that ‘Eglouvis’ landrace has a unique genetic background that significantly differs from ‘Samos’ and ‘Demetra’ and no overlapping could be detected. Genetic variability within the ‘Eglouvis’ landrace can be considered in targeted breeding programs as a significant phytogenetic resource of lentils in Greece.


2019 ◽  
Vol 286 (1911) ◽  
pp. 20191311 ◽  
Author(s):  
Vlad Dincă ◽  
Kyung Min Lee ◽  
Roger Vila ◽  
Marko Mutanen

The Palaearctic butterfly Melitaea didyma stands out as one of the most striking cases of intraspecific genetic differentiation detected in Lepidoptera: 11 partially sympatric mitochondrial lineages have been reported, displaying levels of divergence of up to 7.4%. To better understand the evolutionary processes underlying the diversity observed in mtDNA, we compared mtDNA and genome-wide SNP data using double-digest restriction site-associated DNA sequencing (ddRADseq) results from 93 specimens of M. didyma ranging from Morocco to eastern Kazakhstan. We found that, between ddRADseq and mtDNA results, there is a match only in populations that probably remained allopatric for long periods of time. Other mtDNA lineages may have resulted from introgression events and were probably affected by Wolbachia infection. The five main ddRADseq clades supported by STRUCTURE were parapatric or allopatric and showed high pairwise F ST values, but some were also estimated to display various levels of gene flow. Melitaea didyma represents one of the first cases of deep mtDNA splits among European butterflies assessed by a genome-wide DNA analysis and reveals that the interpretation of patterns remains challenging even when a high amount of genomic data is available. These findings actualize the ongoing debate of species delimitation in allopatry, an issue probably of relevance to a significant proportion of global biodiversity.


2007 ◽  
Vol 26 (3) ◽  
pp. 201-205
Author(s):  
Yan-Qiu Chen ◽  
Xiao-Fan Guo ◽  
Chang-Tian Li ◽  
Yu Li

Genetic Analysis ofInonotus ObliquusStrains by RAPDRAPD profiling of eightInonotus obliquusstrains isolated from sclerotia collected from different areas of China was conducted to determine the genetic variability within this important medicinal fungus and to better define relationships between the genotype and geographical origins of isolation. Twelve 10-mer primers generated a total of 167 stable and reproducible DNA fragments, of which 101 (60.5%) were polymorphic. DNA fingerprints revealed genetic diversity among the strains tested, but there was the little intraspecific difference between the fingerprints of individual strains. A phenogram constructed based on UPGMA analysis of genetic distances calculated from RAPD fragment data identified three distinct groupings: (1) BCX01 and BCX02, (2) JL01, JL02, JL03, JL04 and JL05, (3) HLJ01. Our data confirm that the genetic variability among different strains may be a useful ancillary tool for identifyingl. obliquussclerotia of different geographical origins.


2013 ◽  
Vol 61 (5) ◽  
pp. 357 ◽  
Author(s):  
Anas M. Khanshour ◽  
Rytis Juras ◽  
E. Gus Cothran

The Waler horse breed is an integral part of Australian history. The purposes of this study were to analyse the genetic variability in Waler horses from Australia and to investigate genetic relationships with other horse breeds. We examined the genetic diversity of 70 Waler horses sampled from seven breeding stations in Australia. Also we analysed the relationships of these horses with 11 other horse breeds. Analysis of the genetic structure was carried out using 15 microsatellite loci, genetic distances, AMOVA, factorial correspondence analysis and a Bayesian method. We found that the genetic diversity in the Waler was greater than the domestic horse mean and exceeded that of all endangered horse breeds. Our findings also revealed moderate population subdivision rather than inbreeding. All genetic similarity measures indicated that the Thoroughbred might be a key ancestor to the Waler. This study indicates that there is no immediate concern for loss of variation in Waler horses. Also, there clearly has been a strong input from the Thoroughbred into the Waler horse breed. However, the genetic evidence suggests that this input was not just direct but also came through other types of horses with a Thoroughbred cross background.


Sign in / Sign up

Export Citation Format

Share Document