scholarly journals Anthropogenic Nitrate Pollution in Groundwater and Its Health Risks in The View of Background Concentration in a Semi-Arid Area of Rajasthan

Author(s):  
Abdur Rahman ◽  
N.C. Mondal ◽  
K.K. Tiwari

Abstract An increased nitrate (NO3-) concentration in groundwater has been a rising issue on a global scale in recent years. Through different consumption mechanisms, it clearly illustrates the adverse effects on human health. The goal of this present study is to assess the natural and anthropogenic NO3- concentration in groundwater and its related risks to human health in the different groups of ages such as children, males, and females. Groundwater samples (n=101) were obtained and analysed for their physicochemical components, along with the nitrate concentration in a semi-arid area of Rajasthan. The results show that most of the samples were influenced by anthropogenic activities. The background and anthropogenic levels had been estimated and marked as 7.2 mg/L and 13.3 mg/L for the background and anthropogenic concentrations, respectively. About 83% of nitrate samples were exceeded the background limit, while 28% of the samples were beyond the permissible limit of 45 mg/L as stated by the Bureau of Indian Standards (BIS). Nitrate health risks were also measured by oral intake and dermal contact sources for the residents in this area. The oral exposure of nitrate was very high as compare to dermal contact. With regards to the non-carcinogenic health risk, the total Heath Index (HITotal) values of groundwater nitrate in the study area varied from 0.045 to 3.153 with an average of 0.964 for males, 0.053 to 3.726 with an average of 1.139 for females, and 0.061 to 4.278 with an average of 1.308 for children. The nitrate health risk assessment shows that about 38%, 46%, and 49% of groundwater samples constitute the non-carcinogenic health risk to males, females, and children, respectively.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rahman ◽  
N. C. Mondal ◽  
K. K. Tiwari

AbstractAn increased nitrate (NO3−) concentration in groundwater has been a rising issue on a global scale in recent years. Different consumption mechanisms clearly illustrate the adverse effects on human health. The goal of this present study is to assess the natural and anthropogenic NO3− concentrations in groundwater in a semi arid area of Rajasthan and its related risks to human health in the different groups of ages such as children, males, and females. We have found that most of the samples (n = 90) were influenced by anthropogenic activities. The background level of NO3− had been estimated as 7.2 mg/L using a probabilistic approach. About 93% of nitrate samples exceeded the background limit, while 28% of the samples were beyond the permissible limit of 45 mg/L as per the BIS limits. The results show that the oral exposure of nitrate was very high as compare to dermal contact. With regard to the non-carcinogenic health risk, the total Hazard Index (HITotal) values of groundwater nitrate were an average of 0.895 for males, 1.058 for females, and 1.214 for children. The nitrate health risk assessment shows that about 38%, 46%, and 49% of the samples constitute the non-carcinogenic health risk to males, females, and children, respectively. Children were found to be more prone to health risks due to the potential exposure to groundwater nitrate.


2022 ◽  
Vol 964 (1) ◽  
pp. 012010
Author(s):  
Mai Nhu Hoang ◽  
Phu Le Vo ◽  
Trong Vinh Bui ◽  
Pham Hung ◽  
Quang Khai Ha

Abstract Arsenic contaminated groundwaters is a global environmental issue which cause serious problems for human health risks. 188 groundwater samples were collected in private wells of Lam Dong Province, a central highland area, Vietnam to investigate the health risks to the local people by using arsenic contaminated groundwater for drinking purpose. The result showed that the arsenic concentration is average of 14 μg/L and maximum of 500 μg/L. About 12% out of the total groundwater samples have arsenic concentration exceeded that value of 10 μg/L recommended for drinking water by World Health Organization (WHO, 2019). The health risk assessment showed that hazard quotient (HQ) value for adults was up to 60.6 with an average of 1.7 and about 14% of total samples show the HQ values greater than 1. The HQ value for children is average of 4.7 (maximum of 166.7) and about 23% of total groundwater samples show HQ > 1 for children. Cancer risk (CR) values were up to 27x10-4 (average of 8x10-4) for adults and 75x10-4 (average of 21x10-4) for children. About 26% and 29% of out of the total samples show CR value for adult and children greater than the CR (1×10-4) proposed by the USEPA. The result also indicated that the consumption of arsenic contaminated groundwater may seriously damage the human health. Therefore, groundwater in the area needs to be treated for arsenic removal before drinking to minimize the adverse effect on local communities’ health.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 678
Author(s):  
Kai Zhang ◽  
XiaoNan Li ◽  
ZhenYu Song ◽  
JiaYu Yan ◽  
MengYue Chen ◽  
...  

Cadmium (Cd) is a highly carcinogenic metal that plays an important role in the risk management of soil pollution. In this study, 153 soil samples were collected from a coal chemical plant in northwest China, and the human health risks associated with Cd were assessed through multiple exposure pathways. Meanwhile, by the Kriging interpolation method, the spatial distribution and health risks of Cd were explored. The results showed that the average concentration of Cd in the soil was 0.540 mg/kg, which was 4.821 and 5.567 times that of the soil background value in Ningxia and China, respectively. In comparison, the concentration of Cd in the soil was below the national soil environmental quality three-level standard (1.0 mg/kg). In addition, health risk assessment results showed that the total carcinogenic risk of Cd was 1.269 × 10−6–2.189 × 10−6, both above the acceptable criteria (1 × 10−6), while the hazard quotient was within the acceptable level. Oral intake and ingestion of soil particles were the main routes of exposure, and the carcinogenic risk control value of oral intake was the lowest (0.392 mg/kg), which could be selected as the strict reference of the safety threshold for Cd in the coal chemical soil. From Kriging, a prediction map can be centrally predicted on heavy metal pollution in the area surrounding the coal entrance corridor and pedestrian entrance. This study can provide a theoretical basis for the determination of the heavy metal safety threshold of the coal chemical industry in China.


2015 ◽  
Vol 5 (9) ◽  
pp. 68-77 ◽  
Author(s):  
Mohammad Latiful Bari ◽  
Hasina Akhter Simol ◽  
Nusrat Khandoker ◽  
Rokeya Begum ◽  
Ummay Nasrin Sultana

Background. For over a decade, solid tannery waste has been converted into protein concentrate and used as a feed ingredient because of its cheap availability. However, as chromium sulfate is commonly used in the tanning process, the chromium (Cr) content of tanned skin-cut wastes (SCW) may enter the edible parts of poultry through feed. Therefore, there is a chance that Cr and other heavy metals may be present in the edible portion of poultry and consequently transfer to humans upon poultry consumption. Objectives. In this study, skin-cut wastes (SCW)-based poultry feed and the edible parts of chicken fed with this feed were analyzed to understand the potential health risks of their use as poultry feed. Methods. In the present study, the presence of heavy metal content in SCW, poultry feed, and edible portions of different kinds of chicken was determined using atomic absorption spectrophotometer methods and the associated health risk estimation was calculated by comparing the target hazard quotient (THQ) value and reference daily intake value. Results. The results revealed the presence of Cr content ranging from 0.12–3.11 mg/kg and lead (Pb) content ranging from 8.06–22.0 mg/kg in SCW. In addition, Cr and Pb were present in the range of 0.27–0.98 mg/kg and 10.27–10.36 mg/kg, respectively, in poultry feed. However, no cadmium (Cd) was found in SCW, but the presence of Cd ranged from 0.03–0.05 mg/kg in feed. When contaminated poultry feed was fed to live poultry, the presence of Cr, Pb and Cd was observed in the edible portions (i. e. skin, liver, gizzard, and meat). Irrespective of the edible parts and chicken type, Cr values ranged from 0.1–2.440 mg/kg; Pb values ranged from 0.257–1.750 mg/kg; and Cd values ranged from below detection limit (BDL) to 0.037 mg/kg. Conclusions. The estimated daily intake value, THQ, along with the aggregate hazard index value, indicated a potential risk to consumers through consumption of contaminated chicken. Therefore, the study results clearly demonstrate heavy metals accumulation in chicken due to feeding SCW-based feed. The contaminated chicken further transfers these heavy metals to humans through ingestion. Hence, there is a potential human health risk through consumption of contaminated chicken meat.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ewa Adamiec ◽  
Elżbieta Jarosz-Krzemińska

Abstract The objective of the study was to determine concentration of metals in sidewalk dust collected in close vicinity to heavily congested roads in Poland in order to assess non-carcinogenic and carcinogenic health risk for both children and adults associated with the ingestion, dermal contact and inhalation of sidewalk dust. Results revealed that sidewalk dust from Warsaw, Krakow, Wroclaw and Opole is heavily contaminated especially with Sb, Se, Cd, Cu, Zn, Pb, considered as indicators of traffic emission. Hazardous indices determined for different exposure pathways indicated that the greatest health risk for both children and adults is associated with the ingestion of sidewalk dust. Carcinogenic risk associated with the ingestion of sidewalk dust by children, calculated for As, Cd, Ni and Pb exceeded safe level of 1 × 10−4 in all cities except for Warsaw. Non-carcinogenic risk of ingestion for children was two orders of magnitude higher than dermal risk and four to five orders of magnitude higher than risk of inhalation. Non-carcinogenic risk associated with the ingestion of sidewalk dust by adults is comparable with dermal contact risk and five orders of magnitude higher when inhalation risk.


2020 ◽  
Vol 24 (8) ◽  
pp. 1409-1418
Author(s):  
B. Samuel ◽  
S. Sorsa ◽  
F. Daniel ◽  
G. Riise ◽  
G.M. Zinabu

Concentrations of heavy metals (Cr, Co, Fe, Ni, Cu, Zn, As, Se, Pb and Hg) in muscle tissues of two fish species (Clarias gariepinus and Oreochromis niloticus) in an Ethiopian rift-valley lake (Hawassa) and a neighboring stream (Boicha) were determined. Target hazard quotients (THQ), hazard index (HI) and target cancer risk (TCR) were used as indices to evaluate potential human health risks from fish consumption. Average concentrations of metals decreased in the order Zn>Fe>Se>Cu>Hg>As>Ni>Cr>Co>Pb and Zn>Fe>Se>Cu>As>Hg>Cr>Ni>Pb>Co in muscle tissues of C. gariepinus and O. niloticus, respectively. Mean concentrations of Hg (0.34+0.04 mg kg-1) in muscle tissues of C. gariepinus from Lake Hawassa, and As (0.18+0.05 mg kg-1) as well as Hg (0.46+0.03 mg kg-1) in muscle tissues of C. gariepinus from Boicha stream were above the safety limits set by WHO/FAO. Likewise, mean concentrations of As (0.31+0.03 mg kg-1) and Hg (0.19+0.05 mg kg-1) in muscle tissues of O. niloticus from Lake Hawassa and Cr (0.19+0.03 mg kg-1), As (0.33 +0.04 mg kg-1), and Hg (0.34+0.09 mg kg-1) in O. niloticus from Boicha stream were also above safety limits. From the results of human health risk assessments it was concluded that Cr, Cu, Hg and As pose potential health risks due to consumption of the two fish species from both water bodies. Moreover, effects of all heavy metals put together may affect human health as indicated by the high HI. Effluents from industries are assumed to be the main sources of the heavy metals. Therefore, regular monitoring of the water bodies and policy interventions with respect to waste disposal are recommended to protect the health of the ecosystem and the public. Keywords: Fish consumption, health risk, heavy metals, Lake Hawassa


Author(s):  
K. Nkitikpor ◽  
R. E. Jemerigbe

Aims: The health risk assessment of some toxic metals in groundwater in four selected towns of Delta State, Nigeria was confirmed by this study. Methodology: Ninety six groundwater samples were obtained from sixty four hand-dug wells and thirty two boreholes between December 2016 and May 2017. Samples were analyzed for heavy metals using standard procedures. Data collected was subjected to descriptive and inferential statistics using the Statistical Package for Social Sciences (SPSS) for Windows version 22.0. Health Risk Assessment for Non cancer hazard and carcinogenic effects were determined. Results: The HQ of Cr, Mn and Ni were below 1.0 indicating no threat to the water consumers while the HQ values for Pb, Cd and Cu were above 1.0 indicating risk to human health. The HI value was found to be greater than 1.0, indicating noncarcinogenic adverse effects. The estimated Lifetime of Carcinogenic Risks (LTCR) for Pb, Cr, Cd and Ni exceeded the predicted lifetime risk for carcinogens of 10−6 from ingestion pathway. The groundwater had higher risks of Cr and Cd as LTCR value in most sites were >10−4. The high LTCR should be given high priority as public health is concerned. Conclusions: This study indicated possible non-carcinogenic and carcinogenic human health hazard from groundwater consumption in study area through oral consumption.


Sign in / Sign up

Export Citation Format

Share Document