Antimalarial activity of seed extracts of Schinus molle against plasmodium berghei in mice

2020 ◽  
Author(s):  
Abebe Basazn Mekuria ◽  
Mestayet Geta ◽  
Eshetie Melese Birru ◽  
Desalegn Asmelashe Gelayee

Abstract Background: Due to drug resistance and inefficient eradication techniques, malaria continues to be a major public health issue in countries with low- and middle-income. The seeds of Schinus molle are used in the Ethiopian folklore medicine for the treatment of malaria. However, this claim is not yet supported with scientific researches. Hence, the current study aims to investigate in vivo, antimalarial activity of hydro-alcoholic crude extract and subsequent solvent fraction of Schinus molle seeds on Plasmodium berghe infected mice.Methods: A hydro-alcoholic crude extract and solvent fractions (ethyl acetate, chloroform and aqueous) of Schinus molle seeds were tested at different doses (100, 200 and 400 mg/kg respectively ) to evaluate in vivo antimalarial activity of extracts in a 4-day suppressive, curative, and prophylaxis antimalarial test models. The parasitemia level, packed cell volume, survival of date, body weight, and body temperature were used to evaluate the anti-plasmodia activity of the extracts. One way ANOVA was employed to analyze these data, followed by post hoc Tukey’s HSD multiple comparison test.Results: The chemo-suppressive activities produced by the highest dose (400mg/kg) of crude extract and the aqueous fraction of Schinus molle seeds in the four-day suppressive test were 76.03% and 73.82%(p<0.001), respectively. In the curative test, the highest dose of crude and the aqueous fraction of Schinus molle seeds had 82.12% and 84.30% (p<0.001) suppression activity, respectively. The percentage of suppression in the prophylactic activities test of the aqueous fraction was 79.78% (p<0.001) at 400mg/kg compared to the negative control group. The studied plant extracts were likely anticipated to show rapid rectal temperature reduction and weight loss significantly. Among the extracts, only chloroform fraction has prevented the reduction of packed cell volume, due to the absence of saponin in the fraction. The mice which were treated with crude extract and aqueous fraction survived longer and gained net body weight as compared to vehicle-treated mice (p<0.001).Conclusion: The crude extract and aqueous fraction of Schinus molle seeds possessed significant antimalarial activity. These results collectively indicate that the plant has promising anti-plasmodial activity against Plasmodium berghei. However, further confirmatory studies followed by isolation and characterization of the active antimalarial compound are recommended.

2021 ◽  
Vol 26 ◽  
pp. 2515690X2098428
Author(s):  
Abebe Basazn Mekuria ◽  
Mestayet Geta ◽  
Eshetie Melese Birru ◽  
Desalegn Asmelashe Gelayee

Background. Malaria is a major public health problem in developing countries. In Ethiopian, the seeds of Schinus molle are used for the management of malaria. Therefore, the current study aimed to evaluate in vivo antimalarial activity of hydro-alcoholic crude extract and solvent fractions of Schinus molle seeds in Plasmodium berghei infected mice. Methods. An 80 percent of methanolic crude extract and solvent fractions of Schinus molle seeds were tested for antimalarial activity at 100, 200 and 400 mg/kg doses. The parasitemia level, packed cell volume, body weight, survival of date and rectal temperature were used to evaluate the anti-malarial activity of the extracts. One-way ANOVA followed by post hoc Tukey’s HSD multiple comparison test was employed and the result was expressed in mean ± SEM (standard error of the mean). Results. The curative activity of the highest dose of crude extract and aqueous fraction of Schinus molle seeds was 69.86% and 73.82% ( p < 0.001), respectively. In the prophylactic test, aqueous fraction had 72.39% ( p < 0.001) suppression antimalarial activity. Among solvent fractions, only chloroform fraction was significantly attenuated packed cell volume reduction. The mice treated with crude extract and aqueous fraction had longer survival date than vehicle-treated mice ( p < 0.001). Conclusion. The experiment finding showed that the crude extract and solvent fractions of Schinus molle seeds had significant curative and prophylaxis anti-plasmodial activity. This result revealed that the Schinus molle seeds extract has promising antimalarial activity against Plasmodium berghei. However, further confirmatory studies, isolation and characterization of the active constituents are recommended.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Sakaewan Ounjaijean ◽  
Manas Kotepui ◽  
Voravuth Somsak

Plant species of the genus Tinospora (Menispermaceae) possess several pharmacological properties, and T. crispa has been reported to have antimalarial activity. T. baenzigeri (Chingcha Chalee) is a rich source of terpenes and quinoline alkaloids; however, it still has not yet been investigated the antimalarial activity of this plant extract. Hence, this study was aimed to evaluate the antimalarial activity of T. baenzigeri stem extract against Plasmodium berghei-infected mice. The aqueous crude extract of T. baenzigeri stem was prepared using a microwave-assisted method and tested for acute toxicity in mice. For evaluating the antimalarial activity in vivo, the standard 4-day test was carried out using groups of ICR mice infected with P. berghei ANKA administered orally by gavage with the extract (100, 250, and 500 mg/kg) for 4 consecutive days. Parasitemia, body weight, packed cell volume, and mean survival time were then measured. It was found that the aqueous crude extract of T. baenzigeri stem did not exhibit any sign of toxicity up to the dose of 2,000 mg/kg. The extract significantly (P<0.01) inhibited parasitemia in a dose-dependent manner, with 22.02%, 50.81%, and 74.95% inhibition. Moreover, the marked prevention of body weight loss and packed cell volume reduction was observed at doses of 100, 250, and 500 mg/kg of extract-treated mice. Additionally, the extract prolonged the mean survival time of P. berghei-infected mice, compared to the untreated group. In conclusion, the aqueous crude extract of T. baenzigeri stem has demonstrated potent antimalarial activity against P. berghei-infected mice with prolonged mean survival time and prevention of body weight loss and packed cell volume reduction.


2020 ◽  
Author(s):  
Melkamu Adigo Shibeshi ◽  
Tezera Jemere Aragaw ◽  
Getnet Mequanint Adinew ◽  
Engdaw Fentahun Enyew

Abstract Background Malaria is an infectious, hematologic disease causing death and illness in children and adults, especially in tropical countries. The aim of this study was to evaluate the antimalarial activity of Combretum molle extract in vivo assays against Plasmodium berghei in Swiss albino mice. Methods Plasmodium berghei a rodent malaria parasite was inoculated to healthy Swiss Albino mice age 6–8 weeks either sex, weight 20–33g. 100, 200 and 400mg/kg/day of Crude methanolic extract of Combretum molle were administered. Parameters such as Percent parasitemia, body weight, Body temperature, packed cell volume and survival time were then determined using standard tests. Data were analyzed using one-way ANOVA followed by the Post hoc Tukey HSD test with SPSS software version 24.0 and P ≤0.05 considered as statistically significant. Results Chemosuppresive effect exerted by the crude extract ranged between 27-68%. The curative effect of the crude extract was in the range of 25-49% and ptophylactic effect of the crude extract was in the range of 51–76.2%%. The maximum effect in all tests on Chemosuppresive, curative, Prophylactic, prevention of weight loss, body temperature and packed cell volume and an increase in mean survival time was observed at higher doses of the crude extract. Conclusion From the present study it can be concluded that the crude extract of Combretum molle leaves has been shown promising antimalarial activity. This finding supports the traditional use of the plant for the treatment of malaria in Ethiopia. Thus, it could be considered as a potential source to develop safe, effective and affordable antimalarial agent.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Agumas Alemu Alehegn ◽  
Jibril Seid Yesuf ◽  
Eshetie Melese Birru

Background. Treatment of malaria has been compromised by the emergence of drug-resistant parasites. Consequently, novel agents are urgently needed from different sources including from medicinal plants. Thus, the current study aimed at evaluating the antimalarial activity of crude extract and solvent fractions of the leaves of Bersama abyssinica (B. abyssinica) against Plasmodium berghei infection in Swiss Albino mice. Method. A 4-day suppressive test was employed to evaluate the antimalarial effect of crude extract and solvent fractions against early infection. The curative and prophylactic effects of crude extract and fraction with the highest chemosuppression were further tested by Rane’s test and residual infection procedure. Parasitemia, survival time, packed cell volume (PCV), body weight, and rectal temperature of mice were used as evaluation parameters. Windows SPSS version 20 was used to analyze the data and analysis of variance (ANOVA) followed by Tukey’s post hoc test was used to compare data between groups. Results. The crude extract and aqueous fraction significantly (P<0.05 to 0.001) suppressed parasitemia followed by protection of PCV reduction resulting in prolonging the survival time but failed to protect body weight and rectal temperature reduction in all tested models. The ethyl acetate and chloroform fractions also showed significant chemosuppression and PCV protection in the 4-day suppressive test. The crude extract exhibited a chemosuppression of 49.51%, 57.94%, and 44.11% while the aqueous fraction showed suppression of 47.69%, 51.62%, and 37.07% in 4-day suppressive, curative, and prophylactic tests, respectively, at 400 mg/kg. Conclusion. The crude extract and fractions showed fairly moderate antimalarial activity, and the finding supports the traditional claims and previous in vitro studies. Thus, this may call for further studies to isolate chemical entities for additional safety and efficacy tests.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rahma Udu ◽  
Job Oyweri ◽  
Jeremiah Gathirwa

Background. Chemotherapy plays a crucial role in malaria control. However, the main obstacle to treatment has been the rise of parasite resistance to most antimalarial drugs. Artemisinin-based combination therapies (ACTs) remain the most effective antimalarial medicines available today. However, malaria parasite tolerance to ACTs is now increasingly prevalent especially in Southeast Asia presenting the danger of the spread of ACTs resistance to other parts of the world. Consequently, this creates the need for alternative effective antimalarials. Therefore, this study sought out to determine antimalarial potential, safety, and resistance development of the extracts in a mouse model. Method. Methanolic and ethyl acetate extracts were obtained by solvent extraction. The extracts were assayed for acute toxicity in vivo. Additionally, the two extracts were evaluated for antimalarial activity in vivo against Plasmodium berghei ANKA strain by the 4-day suppressive test at 500, 250, and 125 mg/kg/day. Packed cell volume was evaluated to determine anemia manifestation. Finally, continuous drug pressure experiment at 500 mg/kg and DNA amplification via PCR were conducted. The amplicons underwent through Sanger sequencing. Results. There was no toxicity realized in the animals at 2000 mg/kg. Importantly, high parasitemia suppression of 75.52% and 75.30% using a dose of 500 mg/kg of methanolic and ethyl acetate extracts, respectively, was noted. The extracts were able to reverse packed cell volume reduction. Nigella sativa-resistant phenotype was selected as delayed parasite clearance. However, there was no change in the nucleotide sequences of PbMDR1 and PbCRT genes. Conclusion. The results provide room for future exploitation of the plant as an antimalarial.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Getu Habte ◽  
Teshome Nedi ◽  
Solomon Assefa

Background. Malaria is among the leading causes of mortality and morbidity. Moreover, the emergence of resistance to antimalarial drugs is a major problem in controlling the disease. This makes the development of novel antimalarial drugs a necessity. Medicinal plants are important sources in discovering antimalarial drugs. Schinus molle is claimed for its antimalarial effect in Ethiopian folkloric medicine and endowed with in vitro antiplasmodial activity. In the present study, the in vivo antimalarial activity of the plant was investigated. Methods. Acute toxicity was carried out using a standard procedure. To screen the in vivo antimalarial potential of the S. molle against Plasmodium berghei (ANKA), a 4-day suppressive test was employed. The extracts and fractions were given to infected mice by oral gavage at 100, 200, and 400 mg/kg/day for four consecutive days. Parameters such as parasitemia were then evaluated. Results. Any sign of toxicity was not observed in the oral acute toxicity test. The crude extracts and solvent fractions exerted a significant (p<0.05) inhibition of parasite load compared to the negative control. The highest inhibition (66.91%) was exhibited by the 400 mg/kg/day dose of 80% methanolic crude extract. Among the fractions, chloroform fraction demonstrated maximal chemosuppressive effect (55.60%). Moreover, crude extracts and solvent fractions prevented body weight loss, reduction in temperature, and anemia compared to the negative control. Except the aqueous fraction, the tested plant extracts were able to significantly prolong the survival time of infected mice. Conclusion. The findings of the present study confirmed the safety and a promising in vivo antimalarial activity of S. molle, thus supporting the traditional claim and in vitro efficacy. In-depth investigations on the plant, however, are highly recommended.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mihret Ayalew ◽  
Azmeraw Bekele

Introduction. Traditional medicinal plants are used as a common source of developing new and effective antimalarial drugs. E. globulus leaf has been used in the traditional management of malaria in different countries, including Ethiopia. However, there is no in vivo study done on the antimalarial activity of the plant. Thus, this study aimed to evaluate the antimalarial activity of crude extract of E. globulus Labill. leaf in P. berghei-infected mice. Method. The fresh leaves of E. globulus were collected, washed, air-dried, and made as coarse powder. Either sex of mice aged 6 to 8 weeks was used in the experiment. The antimalarial activity of the crude extract was tested in four-day suppressive, curative (Rane’s), and prophylactic (repository) tests. The parameters like level of parasitemia, packed cell volume, body weight, rectal temperature, and mean survival time were recorded. The analysis of the data was done with SPSS version 20 with a 95% confidence interval in one-way ANOVA followed by Tukey’s post hoc test. Results. In all three antimalarial test models, the extract of leaf of E. globulus at all three doses suppressed the level of parasitemia significantly ( p < 0.001 ), increased survival time ( p < 0.05 to p < 0.001 ), and prevented a decrease in body weight as compared to the negative control. The middle and large doses of the extract also decreased loss of body temperature ( p < 0.05 to p < 0.001 ) compared to the negative control. Reduction of packed cell volume was prevented within the three test doses of the extract in both curative and prophylactic tests and middle and large doses in the 4-day suppressive test compared to the negative control. Conclusion. The crude extract of the plant showed promising antimalarial activity. This supports the traditional use and the in vitro test result of the plant.


2019 ◽  
Vol 7 ◽  
pp. 205031211984976 ◽  
Author(s):  
Temesgen Bihonegn ◽  
Mirutse Giday ◽  
Getnet Yimer ◽  
Abebe Animut ◽  
Mekonnen Sisay

Background: Vernonia amygdalina Del. (Asteraceae) is reported to be traditionally used for the treatment of malaria. Based on folkloric repute of this plant in Ethiopian traditional medicine and crude extract-based ethnopharmacological studies conducted in few countries, this study was undertaken to evaluate the in vivo antimalarial activity of 80% methanol extract and its solvent fractions of the leaves of V. amygdalina in mice infected with Plasmodium berghei. Methods: A 4-day suppressive test was conducted on mice infected with P. berghei to find out antimalarial effect of chloroform, butanol and aqueous fractions obtained from the 80% methanol crude extract. In all the activity tests, mice were randomly assigned in five groups (three tests and two controls) of six animals in each and received respective treatments. Data were analyzed using one way analysis of variance followed by Tukey’s post hoc test for multiple comparisons. Results: Acute oral toxicity test showed that all solvent fractions of the leaves of V. amygdalina revealed neither mortality nor overt signs of toxicity up to 2000 mg/kg. This study indicated that the percentage parasitemia suppression of 80% methanol extract was 32.47% (±2.65), 35.40% (±3.14) and 37.67% (±2.50) at 200, 400 and 600 mg/kg, respectively. All doses of the 80% methanol extract of V. amygdalina prolonged survival time and prevented weight loss and packed cell volume reduction in infected mice. All doses of chloroform and butanol fractions significantly suppressed parasitemia (p < 0.05), increased survival time (p < 0.05) compared to negative control and exhibited a significant reduction in rectal temperature (p < 0.05). All solvent fractions significantly prevented weight loss (p < 0.05) at all tested doses. The 80% methanol extract and chloroform and butanol fractions significantly (p < 0.05) prevented further reduction in rectal temperature of P. berghei-infected mice at all doses. Conclusion: The results of this study indicated that 80% methanol extract and solvent fractions of the leaves of V. amygdalina demonstrated promising antimalarial activity. The study corroborated the folklore use of this plant for the treatment of malaria in ethnomedicine in Ethiopia.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Noumedem Anangmo Christelle Nadia ◽  
Yamssi Cédric ◽  
Simeni Njonnou Sylvain Raoul ◽  
Ngongang Ouankou Christian ◽  
Mounvera Abdel Azizi ◽  
...  

Background. Malaria is one of the most critical diseases causing about 219 million cases worldwide in developing countries. The spread and development of resistance against chemical antimalarial drugs is one of the major problems associated with malaria control. The present study was to investigate the antimalarial efficacy of ethyl acetate extract and one fraction of Bidens pilosa in vivo in order to support the usage of this plant by traditional healers to treat malaria. Methods. The extracts were prepared by maceration of B. pilosa leaf powder in ethyl acetate. The liquid filtrate of the extract and the best in vitro antiplasmodial fraction using HPLC were concentrated and evaporated using a rotavapor under vacuum to dryness. The antimalarial activity of B. pilosa plant products were evaluated in vivo against Plasmodium berghei infected mice according to the Peter and Rane test. The antimalarial efficacy of the a selected crude extract (ethyl acetate extract) was evaluated at 125, 250, and 500 mg/kg, while a selected fraction from ethyl acetate extract (fraction 12) was evaluated at 62.5 and 125 mg/kg. Blood from experimental animals was collected to assess hematological parameters. Results. The crude extract of ethyl acetate and fraction 12 demonstrated 100% in vivo parasite suppressive activity at doses of 500 mg/kg and 125 mg/kg, respectively, for the crude extract and fraction 12. The mice treated with 250 and 500 mg/kg had their parasitemia (intraerythrocytic phase of P. Berghei) drop considerably, disappearing by the 8th day in mice receiving 500 mg/kg. The ethyl acetate extract of B. pilosa, fraction 12 showed an even higher antiplasmodial activity. By the 5th day of the experiment, the treatment led to a modification of hematological parameters in mice. The chloroquine (5 mg/kg), fraction 12 (125 mg/kg), and the crude extract (500 mg/kg) groups all survived the 30 days of the experiment, while the negative control group registered 100% of the deaths. Conclusion. This study scientifically supports the use of Bidens pilosa leaves in the traditional treatment of malaria. However, the mode of action and in vivo toxicity of the plant still need to be assessed.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988532 ◽  
Author(s):  
Dagninet Derebe ◽  
Muluken Wubetu

Failure of the efficacy of antimalarial drugs is recognized in different classes of medicines for treating malaria, which urges the need for new drugs. This study tried to check the in vivo antimalarial activity of the root extracts of Acanthus polystachyus Delile against Plasmodium berghei–infected mice. The study revealed that the methanolic crude extract of the root of Acanthus polystachyus Delile showed significant ( P < .01) parasitemia suppressive activities in both models compared with the negative control. Parasitemia suppressive activities were 25.26%, 33.46%, and 51.48% in a 4-day suppressive test and 23.31%, 31.20%, and 43.54% in prophylaxis test at 100, 200, and 400 mg/kg of the extract, respectively, as compared to the negative control. Besides, the extract increases mean survival time significantly in all tested doses in a 4-day suppressive test, but in the prophylaxis model, only mice treated with 200 and 400 mg/kg significantly lived longer. Based on this finding, the root of Acanthus polystachyus Delile has strong antimalarial activity, which may be a good candidate for new antimalarial agents.


Sign in / Sign up

Export Citation Format

Share Document