scholarly journals Genome-Wide Identification of Metal Tolerance Genes in Potato (Solanum Tuberosum): Response to Two Heavy Metal Stress

Author(s):  
Dandan Li ◽  
Guandi He ◽  
Weijun Tian ◽  
Yun Huang ◽  
Lulu Meng ◽  
...  

Abstract Metal tolerance proteins play an important role in the transport and tolerance of divalent heavy metals in plant species. Potatoes are an important food crop whose yields can be deeply affected by heavy metals. However, there is a lack of information concerning the members and function of the MTP gene family in Solanum tuberosum. In this study, we identified and screened 11 MTP genes in potatoes which we named as StMTP1 to StMTP11 based on their positions on the chromosomes. Phylogenetic analysis divided these 11 MTP genes into three subfamilies; Mn-MTP, Zn-MTP and Zn/Fe-MTP. HXXXD and DXXXD conserved motifs were found on or around the transmembrane domain II and transmembrane domain V of these proteins. The highly conserved histidine and aspartic acid residues may be related to the transport of metal ions. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of StMTP9 and StMTP10 in leaf tissues increased by around 24-fold following cadmium stress for 24 hours. We hypothesize that StMTP9 and StMTP10 respond to cadmium stress. StMTP11 showed the highest level of expression in stem tissues after 6 hours of zinc stress at more than 13 times the level of expression in controls indicating that StMTP11 is more sensitive to zinc stress. In summary, our results further the current understanding of the molecular mechanisms regulated by members of the MTP gene family in plant responses to heavy metal stress.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ahmed H. El-Sappah ◽  
Rania G. Elbaiomy ◽  
Ahmed S. Elrys ◽  
Yu Wang ◽  
Yumin Zhu ◽  
...  

Metal tolerance proteins (MTPs) encompass plant membrane divalent cation transporters to specifically participate in heavy metal stress resistance and mineral acquisition. However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of 12 potential MTP candidate genes in the M. truncatula genome were successfully identified and analyzed for a phylogenetic relationship, chromosomal distributions, gene structures, docking analysis, gene ontology, and previous gene expression. M. truncatula MTPs (MtMTPs) were further classified into three major cation diffusion facilitator (CDFs) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The structural analysis of MtMTPs displayed high gene similarity within the same group where all of them have cation_efflux domain or ZT_dimer. Cis-acting element analysis suggested that various abiotic stresses and phytohormones could induce the most MtMTP gene transcripts. Among all MTPs, PF16916 is the specific domain, whereas GLY, ILE, LEU, MET, ALA, SER, THR, VAL, ASN, and PHE amino acids were predicted to be the binding residues in the ligand-binding site of all these proteins. RNA-seq and gene ontology analysis revealed the significant role of MTP genes in the growth and development of M. truncatula. MtMTP genes displayed differential responses in plant leaves, stems, and roots under five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). Ten, seven, and nine MtMTPs responded to at least one metal ion treatment in the leaves, stems, and roots, respectively. Additionally, MtMTP1.1, MtMTP1.2, and MtMTP4 exhibited the highest expression responses in most heavy metal treatments. Our results presented a standpoint on the evolution of MTPs in M. truncatula. Overall, our study provides a novel insight into the evolution of the MTP gene family in M. truncatula and paves the way for additional functional characterization of this gene family.


2021 ◽  
Author(s):  
Ahmed H. El Sappah ◽  
Rania G. Elbaiomy ◽  
Jia Li ◽  
Kuan Yan ◽  
Yu Wang ◽  
...  

Abstract Metal tolerance proteins (MTP) encompass plant membrane divalent cation transporters to specifically participate in heavy metal stress resistance and minerals acquisition. However, the molecular behaviors and biological functions of this family in M. truncatula are scarcely known. We identified 12 potential MTP candidate genes and analyzed for a phylogenetic relationship, chromosomal distributions, gene structures, protein structures, gene ontology, and previous RNA-seq data. MtMTPs were classified into three major cation diffusion facilitator (CDFs) groups; Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. Structural analysis of SlMTPs displayed high gene similarity within the same group where all of them have cation_efflux domain or ZT_dimer. RNA-seq and gene ontology analysis revealed a significant role of MTP genes during M. truncatula growth and development.MTP genes showed tissue-specific and variable expression levels under the stress of the following five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). Expression levels of Fe2+/MtMTP11 and Mn2+/MtMTP4 were upregulated, while Mn2+/MtMTP5 was downregulated. In conclusion, MtMTP1.1, MtMTP1.2, and MtMTP4 play a key role under heat and heavy metal stress in M. truncatula.


2019 ◽  
Vol 70 (17) ◽  
pp. 4477-4488 ◽  
Author(s):  
Laura C Terrón-Camero ◽  
M Ángeles Peláez-Vico ◽  
Coral Del-Val ◽  
Luisa M Sandalio ◽  
María C Romero-Puertas

Abstract Anthropogenic activities, such as industrial processes, mining, and agriculture, lead to an increase in heavy metal concentrations in soil, water, and air. Given their stability in the environment, heavy metals are difficult to eliminate and can constitute a human health risk by entering the food chain through uptake by crop plants. An excess of heavy metals is toxic for plants, which have various mechanisms to prevent their accumulation. However, once metals enter the plant, oxidative damage sometimes occurs, which can lead to plant death. Initial production of nitric oxide (NO), which may play a role in plant perception, signalling, and stress acclimation, has been shown to protect against heavy metals. Very little is known about NO-dependent mechanisms downstream from signalling pathways in plant responses to heavy metal stress. In this review, using bioinformatic techniques, we analyse studies of the involvement of NO in plant responses to heavy metal stress, its possible role as a cytoprotective molecule, and its relationship with reactive oxygen species. Some conclusions are drawn and future research perspectives are outlined to further elucidate the signalling mechanisms underlying the role of NO in plant responses to heavy metal stress.


2015 ◽  
Vol 1130 ◽  
pp. 263-267 ◽  
Author(s):  
Hee Chan Jang ◽  
Marjorie Valix

In this study, the adaptation of A. thiooxidans to heavy metals leached from saprolitic Ni laterite ores was performed by gradual acclimatisation. The bacteria was cultivated in heavy metals (Ni, Co, Fe, Mg, Cr and Mn) with total concentrations of 2400 to 24000 ppm equivalent to total dissolution of 1 to 10% (w/v) pulp densities of the saprolitic Ni laterite ore. Adaptation evolution mapped from its tolerance index was found to be dependent on metal concentration, acid generation, and period of adaptation. Bio-stimulation of cell growth and acid production was promoted by heavy metal stress on the bacteria. Pre-established heavy metal tolerance of the bacteria improved the leaching rate in its early phase; 20% and 7% increase in Ni and Co metal recoveries were observed in using adapted bacteria. However heavy metal tolerance was also achieved by the bacteria during the leaching process, albeit delayed by a lag phase. These results confirm the robust nature and suitability of A. thiooxidans in direct biomining of Ni ores.


2011 ◽  
Vol 58 (2) ◽  
Author(s):  
Sylwia Pawlak-Sprada ◽  
Maciej Stobiecki ◽  
Joanna Deckert

We examined changes in profiles of isoflavonoids in roots of lupine (Lupinus luteus L. cv. Juno) seedlings in response to treatment with two heavy metals: cadmium (at 10 mg/l) and lead (at 150 mg/l). Overall, 21 flavonoid conjugates were identified in root extracts, some of them with up to six positional isomers. The total amount of all isoflavonoids increased by about 15 % in cadmium-treated plants and by 46 % in lead-treated ones. Heavy metals markedly increased the content of two compounds: 2'-hydroxygenistein glucoside and 2'-hydroxygenistein 7-O-glucoside malonylated. Possible functions of the identified isoflavonoids in yellow lupine exposed to heavy metal stress are discussed.


2015 ◽  
Vol 115 ◽  
pp. 28-37 ◽  
Author(s):  
Fernando P. Guerra ◽  
Luz Reyes ◽  
Ariela Vergara-Jaque ◽  
Carola Campos-Hernández ◽  
Adelina Gutiérrez ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 71 ◽  
Author(s):  
Javaid Akhter Bhat ◽  
S. M. Shivaraj ◽  
Pritam Singh ◽  
Devanna B. Navadagi ◽  
Durgesh Kumar Tripathi ◽  
...  

Over the past few decades, heavy metal contamination in soil and water has increased due to anthropogenic activities. The higher exposure of crop plants to heavy metal stress reduces growth and yield, and affect the sustainability of agricultural production. In this regard, the use of silicon (Si) supplementation offers a promising prospect since numerous studies have reported the beneficial role of Si in mitigating stresses imposed by biotic as well as abiotic factors including heavy metal stress. The fundamental mechanisms involved in the Si-mediated heavy metal stress tolerance include reduction of metal ions in soil substrate, co-precipitation of toxic metals, metal-transport related gene regulation, chelation, stimulation of antioxidants, compartmentation of metal ions, and structural alterations in plants. Exogenous application of Si has been well documented to increase heavy metal tolerance in numerous plant species. The beneficial effects of Si are particularly evident in plants able to accumulate high levels of Si. Consequently, to enhance metal tolerance in plants, the inherent genetic potential for Si uptake should be improved. In the present review, we have discussed the potential role and mechanisms involved in the Si-mediated alleviation of metal toxicity as well as different approaches for enhancing Si-derived benefits in crop plants.


Sign in / Sign up

Export Citation Format

Share Document