scholarly journals Effects of Surface Coupling Strength in WRF/Noah-MP Model on Regional Climate Simulations Over China

Author(s):  
Xia Zhang ◽  
Liang Chen ◽  
Zhuguo Ma ◽  
Jianping Duan ◽  
Danqiong Dai ◽  
...  

Abstract Land–atmosphere energy and moisture exchange can strongly influence local and regional climate. However, high uncertainty exits in the representation of land–atmosphere interactions in numerical models. The parameterization of surface exchange process is greatly affected by varying the parameter Czil which, however, is typically set to a domain-wide constant value. In this study, we examine the sensitivity of regional climate simulations over China to different surface exchange strengths using three Czil schemes (default without Czil , constant Czil = 0.1, and dynamic canopy-height-dependent Czil -h schemes) in the 13-km-resolution Weather Research and Forecasting model coupled with a Noah land surface model with multi-parameterization options (WRF/Noah-MP). Our results demonstrate that the Czil -h scheme substantially reduces the overestimations of land–atmosphere coupling strength in the other two schemes, and comparisons with the ChinaFLUX observations indicate the capability of the Czil -h scheme to better match the observed surface energy and water variations. The results of the Czil schemes applying to four typical climate zones of China present that the Czil -h simulations are in the closest agreements with the field observations. The Czil -h scheme can narrow the positive discrepancies of simulated precipitation and surface fluxes as well as the negative biases of Ts in areas of Northeast, North China, Eastern Northwest, and Southwest. Especially, the above remarkable improvements produced by the Czil -h scheme are primarily over areas covering short vegetation. Also noted that the precipitation simulated by the Czil -h scheme exhibits more intricate and unclear changes compared with surface fluxes simulations due to the non-local impacts of surface exchange strength resulted from the fluidity of the atmosphere. Overall, our findings highlight the applicability of the dynamical Czil as a better physical alternative to treat the surface exchange process in atmosphere coupling models.

2013 ◽  
Vol 17 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
F. Zabel ◽  
W. Mauser

Abstract. Most land surface hydrological models (LSHMs) consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice) in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs) generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM) within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2) and the atmospheric part of the RCM MM5 (45 × 45 km2). The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both spatially and temporally. The distribution of precipitation follows the coarse topography representation in MM5, resulting in a spatial shift of maximum precipitation northwards of the Alps. Consequently, simulation of river runoff inherits precipitation biases from MM5. However, by comparing the water balance, the bias of annual average runoff was improved from 21.2% (NOAH/MM5) to 4.4% (PROMET/MM5) when compared to measurements at the outlet gauge of the Upper Danube watershed in Achleiten.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Helber Barros Gomes ◽  
Maria Cristina Lemos da Silva ◽  
Henrique de Melo Jorge Barbosa ◽  
Tércio Ambrizzi ◽  
Hakki Baltaci ◽  
...  

Dynamic numerical models of the atmosphere are the main tools used for weather and climate forecasting as well as climate projections. Thus, this work evaluated the systematic errors and areas with large uncertainties in precipitation over the South American continent (SAC) based on regional climate simulations with the weather research and forecasting (WRF) model. Ten simulations using different convective, radiation, and microphysical schemes, and an ensemble mean among them, were performed with a resolution of 50 km, covering the CORDEX-South America domain. First, the seasonal precipitation variability and its differences were discussed. Then, its annual cycle was investigated through nine sub-domains on the SAC (AMZN, AMZS, NEBN, NEBS, SE, SURU, CHAC, PEQU, and TOTL). The Taylor Diagrams were used to assess the sensitivity of the model to different parameterizations and its ability to reproduce the simulated precipitation patterns. The results showed that the WRF simulations were better than the ERA-interim (ERAI) reanalysis when compared to the TRMM, showing the added value of dynamic downscaling. For all sub-domains the best result was obtained with the ensemble compared to the satellite TRMM. The largest errors were observed in the SURU and CHAC regions, and with the greatest dispersion of members during the rainy season. On the other hand, the best results were found in the AMZS, NEBS, and TOTL regions.


2020 ◽  
Author(s):  
Xia Zhang ◽  
Liang Chen ◽  
Zhuguo Ma ◽  
Yanhong Gao

<p>The parameterization of surface exchange coefficients (C<sub>h</sub>) representing land–atmosphere coupling strength plays a key role in land surface modeling. Previous studies have found that land–atmosphere coupling in land surface models (LSMs) is overestimated, which affects the predictability of weather and climate evolution. To improve the representation of land–atmosphere interactions in LSMs, this study investigated the dynamic canopy-height-dependent coupling strength in the offline Noah LSM with multiparameterization options (Noah-MP) when applied to China. Comparison with the default Noah-MP LSM showed the dynamic scheme significantly improved the C<sub>h</sub> calculations and realistically reduced the biases of simulated surface energy and water components against observations. It is noteworthy that the improvements brought by the dynamic scheme differed across land cover types. The scheme was found superior in reproducing the observed C<sub>h</sub> as well as surface energy and water variables for short vegetation (grass, crop, and shrub), while the improvement for tall canopy (forest) was found not significant, although the estimations were reasonable. The improved version benefits from the treatment of the roughness length for heat. Overall, the dynamic coupling scheme markedly affects the simulation of land–atmosphere interactions, and altering the dynamics of surface coupling has potential for improving the representation of land–atmosphere interactions and thus furthering LSM development.</p>


2016 ◽  
Author(s):  
Julie Berckmans ◽  
Olivier Giot ◽  
Rozemien De Troch ◽  
Rafiq Hamdi ◽  
Reinhart Ceulemans ◽  
...  

Abstract. The potential of the implementation of the land surface model SURFEX in the atmospheric ALARO-0 model configuration of the ALADIN system is tested in a continuous regional climate simulation. This contribution is evaluated with respect to the regional climate simulated by the original setup of ALARO-0 with ISBA. Next, an assessment has been performed to evaluate the continuous setup with an upper air daily reinitialised setup, where the surface is kept in a freely continuous mode. The results show that the introduction of SURFEX improves or has a neutral impact on the 2 m temperature and the daily total precipitation. More importantly, the use of an upper air daily reinitialised atmosphere outperforms the setup with a continuous atmosphere, for the 2 m temperature in winter and summer, and for the summer daily total precipitation. The differences between the two downscaling setups in the 2 m temperature and precipitation interact with the soil moisture. This coupling is strong for the continental areas, which motivates the use of a coupled land-atmosphere model to optimise the representation of the climate.


2021 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Souhail Boussetta

<p>The ECMWF operational land surface model, based on the Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) is the baseline for global weather, climate and environmental applications at ECMWF. In order to expedite its progress and benefit from international collaboration, an ECLand platform has been designed to host advanced and modular schemes. ECLand is paving the way toward a land model that could support a wider range of modelling applications, facilitating global kilometer scales testing as envisaged in the Copernicus and Destination Earth programmes. This presentation introduces the CHTESSEL and its recent new developments that aims at hosting new research applications.</p><p>These new improvements touch upon different components of the model: (i) vegetation, (ii) snow, (iii) soil hydrology, (iv) open water/lakes (v) rivers and (vi) urban areas. The developments are evaluated separately with either offline simulations or coupled experiments, depending on their level of operational readiness, illustrating the benchmarking criteria for assessing process fidelity with regards to land surface fluxes and reservoirs involved in water-energy-carbon exchange, and within the Earth system prediction framework, as foreseen to enter upcoming ECMWF operational cycles.</p><p>Reference: Souhail Boussetta, Gianpaolo Balsamo*, Anna Agustì-Panareda, Gabriele Arduini, Anton Beljaars, Emanuel Dutra, Glenn Carver, Margarita Choulga, Ioan Hadade, Cinzia Mazzetti, Joaquìn Munõz-Sabater, Joe McNorton, Christel Prudhomme, Patricia De Rosnay, Irina Sandu, Nils Wedi, Dai Yamazaki, Ervin Zsoter, 2021: ECLand: an ECMWF land surface modelling platform, MDPI Atmosphere, (in prep).</p>


2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2014 ◽  
Vol 7 (1) ◽  
pp. 361-386 ◽  
Author(s):  
D. N. Walters ◽  
K. D. Williams ◽  
I. A. Boutle ◽  
A. C. Bushell ◽  
J. M. Edwards ◽  
...  

Abstract. We describe Global Atmosphere 4.0 (GA4.0) and Global Land 4.0 (GL4.0): configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) community land surface model developed for use in global and regional climate research and weather prediction activities. GA4.0 and GL4.0 are based on the previous GA3.0 and GL3.0 configurations, with the inclusion of developments made by the Met Office and its collaborators during its annual development cycle. This paper provides a comprehensive technical and scientific description of GA4.0 and GL4.0 as well as details of how these differ from their predecessors. We also present the results of some initial evaluations of their performance. Overall, performance is comparable with that of GA3.0/GL3.0; the updated configurations include improvements to the science of several parametrisation schemes, however, and will form a baseline for further ongoing development.


2020 ◽  
Author(s):  
Bernd Schalge ◽  
Gabriele Baroni ◽  
Barbara Haese ◽  
Daniel Erdal ◽  
Gernot Geppert ◽  
...  

Abstract. Coupled numerical models, which simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a physically consistent way are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by such models may be regarded as a proxy of the real world, provided they are run at sufficiently high resolution and incorporate the most important processes. Such a virtual reality can be used to test hypotheses on the functioning of the coupled terrestrial system. Coupled simulation systems, however, face severe problems caused by the vastly different scales of the processes acting in and between the compartments of the terrestrial system, which also hinders comprehensive tests of their realism. We used the Terrestrial Systems Modeling Platform TerrSysMP, which couples the meteorological model COSMO, the land-surface model CLM, and the subsurface model ParFlow, to generate a virtual catchment for a regional terrestrial system mimicking the Neckar catchment in southwest Germany. Simulations for this catchment are made for the period 2007–2015, and at a spatial resolution of 400 m for the land surface and subsurface and 1.1 km for the atmosphere. Among a discussion of modelling challenges, the model performance is evaluated based on real observations covering several variables of the water cycle. We find that the simulated (virtual) catchment behaves in many aspects quite close to observations of the real Neckar catchment, e.g. concerning atmospheric boundary-layer height, precipitation, and runoff. But also discrepancies become apparent, both in the ability of the model to correctly simulate some processes which still need improvement such as overland flow, and in the realism of some observation operators like the satellite based soil moisture sensors. The whole raw dataset is available for interested users. The dataset described here is available via the CERA database (Schalge et al., 2020): https://doi.org/10.26050/WDCC/Neckar_VCS_v1.


Sign in / Sign up

Export Citation Format

Share Document