scholarly journals Unravelling the Strategies for Cell wall Biosynthesis used by Salt-Tolerant Proso Millet (Panicum miliaceum L.) under Salt Stress: From Root Structure to Molecular Mechanism

Author(s):  
Yuhao Yuan ◽  
Chunjuan Liu ◽  
Jing Li ◽  
Qian Ma ◽  
Qinghua Yang ◽  
...  

Abstract Background: Considering the twin global problems of increasingly serious energy shortage and effects of salt stress on biofuel plants, breeding of salt-resistant biofuel plant and the discovery of mechanisms for biomass accumulation under salt stress is necessary for energy shortage. Proso millet (Panicum miliaceum L.) is very resilient to abiotic stress, especially to land degradation caused by soil salinization, and its promising as dedicated bioenergy crops for the production of renewable fuels and forage, due to its high photosynthetic efficiency C4 plant and ability to grow in a range of environmental conditions. However, the mechanisms by which the roots of proso millet adapt and tolerate salt-stress are obscure.Results: In this study, plants of a salt-sensitive cultivar (SS 212) and a salt-tolerant cultivar (ST 47) of proso millet were exposed to severe salt stress and subsequent re-watering. ST 47 exhibited greater salt tolerance and faster recovery than SS 212, as evidenced by higher increases in total root length (TRL), root surface area (RSA), root tip number (RTN), biomass. Moreover, microstructural analysis showed that relative to SS 212, the roots of ST 47 could maintain more intact internal structures, and thicker cell wall under salt stress, thereby stronger resistance to salt toxicity and maintenance of growth. Digital RNA sequence analysis suggested more genes involved in salt stress resistance were induced in ST 47 than in SS 212. In ST 47 also, re-watering restored most genes that had been induced by salt stress. Results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis revealed that ST 47 maintained better Na+/ K+ balance to resist Na+ toxicity via a higher capability to restrict Na+ uptake, vacuolar Na+ sequestration, and Na+ exclusion. The mechanism for cell wall biosynthesis in cultivar ST 47 involved the promotion of cell wall composition changes, via efficient regulation of galactose metabolism and biosynthesis of cellulose and phenylpropanoids. Conclusions: Overall, this study provides valuable salt-resistant biofuel resources and mechanisms for relieving the world energy shortage, which could be applied for the rehabilitation of saline lands.

2020 ◽  
Vol 32 (1) ◽  
pp. 518-532
Author(s):  
Yu Hao Yuan ◽  
Jing Li ◽  
Hong Chi Ma ◽  
Qing Hua Yang ◽  
Chun Juan Liu ◽  
...  

HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


2021 ◽  
Author(s):  
Chang‐Hong Yang ◽  
Chao Wang ◽  
Somesh Singh ◽  
Ni Fan ◽  
Shuo Liu ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5957
Author(s):  
Hyun Jin Chun ◽  
Dongwon Baek ◽  
Byung Jun Jin ◽  
Hyun Min Cho ◽  
Mi Suk Park ◽  
...  

Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.


Sign in / Sign up

Export Citation Format

Share Document