scholarly journals Electron spectroscopy with a diamond detector

Author(s):  
C. S. Bodie ◽  
G. Lioliou ◽  
G. Lefeuvre ◽  
A. M. Barnett

Abstract An electronic grade single crystal chemical vapour deposition diamond was investigated as a prototype high temperature spectroscopic electron (β− particle) detector for future space science instruments. The diamond detector was coupled to a custom-built charge-sensitive preamplifier of low noise. A 63Ni radioisotope source (endpoint energy 66 keV) was used to provide a spectrum of β− particles incident on the detector. The operating temperature of the detector/preamplifier assembly was controlled to allow its performance to be investigated between + 100°C and − 20°C, in 20°C steps. Monte Carlo modelling was used to: a) calculate the β− particle spectrum incident on the detector; b) calculate the fraction of β− particle energy deposited into the detector; and c) predict the β− particle spectrum accumulated by the instrument. Comparison between the model and experimental data suggested that there was a 4.5 µm thick recombination region at the front of the detector. The spectrometer was demonstrated to be fully operable at temperatures, T, -20°C ≤ T ≤ 80°C; the results suggested that some form of polarisation phenomenon occurred in the detector at > 80°C. This article presents the first report of a calibrated low energy (⪅ 50 keV) spectroscopic β− particle diamond detector.

1999 ◽  
Vol 32 (5) ◽  
pp. 924-933 ◽  
Author(s):  
A. R. Lang ◽  
A. P. W. Makepeace ◽  
J. E. Butler

Optical microscopic and goniometric measurements were combined with microradiography, diffraction-pattern analysis and topography to study a 2 mm thick [001]-texture CVD (chemical vapour deposition) diamond film that had developed a coarse-grained structure composed of separate columnar crystallites. Individual columns were capped by large (001) facets, with widths up to 0.5 mm, and which were smooth but not flat, whereas the column sides were morphologically irregular. The refractive deviation of X-rays transmitted through the crystallites was exploited for delineating facet edges, thereby facilitating the controlled positioning of small-cross-section X-ray beams used for recording diffraction patterns from selected volumes in two representative crystallites. Their structure consisted of a [001]-axial core column surrounded by columns in twin orientation with respect to the core. The diamond volume directly below the (001) facets was free from low-angle boundaries, and no dislocation outcrops on the facets were detected. Significant elastic deformation of this volume was only present close to the facet periphery, where misorientations reached a few milliradians. Lattice imperfection was high in the twins, with ∼1° misorientations.


Author(s):  
Vladimir Kondratjev ◽  
Vasily Litvinsky ◽  
Serhii Pohuliai ◽  
Stanislavs Lozkins

The results of engineering an intelligent preamplifier for HPGe gamma-detectors are presented. An intelligent preamplifier is a low-noise, high-speed resistive feedback charge-sensitive preamplifier with a built-in microcontroller and additional units that enable control of preamplifier and detector parameters. It also allows to manage performance of the internal testing pulser, sensor of liquid nitrogen level in Dewar, humidity, pressure and temperature sensors in a sealed preamplifier section. Intelligent preamplifier operation, setup and parameter measurements are controlled by a software.


2004 ◽  
Vol 259-260 ◽  
pp. 68-72 ◽  
Author(s):  
Fang Hong Sun ◽  
X.G. Wang ◽  
Zhi Ming Zhang ◽  
H.S. Shen ◽  
Ming Chen

2009 ◽  
Vol 21 (36) ◽  
pp. 364203 ◽  
Author(s):  
Paul W May ◽  
Neil L Allan ◽  
Michael N R Ashfold ◽  
James C Richley ◽  
Yuri A Mankelevich

Sign in / Sign up

Export Citation Format

Share Document