scholarly journals Improving the production of AHL lactonase AiiO-AIO6 from Ochrobactrum sp. M231 in intracellular protease-deficientBacillus subtilis

2020 ◽  
Author(s):  
Rui Xia ◽  
Yalin Yang ◽  
Xingliang Pan ◽  
Chenchen Gao ◽  
Yuanyuan Yao ◽  
...  

Abstract Quorum quenching (QQ) blocks bacterial cell-to-cell communication (i.e., quorum sensing), and is a promising antipathogenic strategy to control bacterial infection via inhibition of virulence factor expression and biofilm formation. QQ enzyme AiiO-AIO6 from Ochrobactrum sp. M231 has several excellent properties and shows biotherapeutic potential against important bacterial pathogens of aquatic species. AiiO-AIO6 can be secretory expressed in Bacillus subtilis via a non-classical secretion pathway.To improve AiiO-AIO6 production, four intracellular protease-deletion mutants of B. subtilis1A751 were constructed by individually knocking out the intracellular protease-encoding genes (tepA, ymfH, yrrNandywpE). The AiiO-AIO6 expression plasmid pWB-AIO6BS was transformed into the B. subtilis 1A751 and its four intracellular protease-deletion derivatives. Results showed that all recombinant intracellular protease-deletion derivatives (BSΔtepA, BSΔymfH, BSΔyrrNand BSΔywpE) had a positive impact on AiiO-AIO6 production. The highest amount of AiiO-AIO6 extracellular production of BSΔywpE in shake flask reached 1416.47 U/mL/OD600, which was about 121% higher than that of the wild-type strain. Furthermore, LC-MS/MS analysis of the degrading products of 3-oxo-C8-HSL by purification of AiiO-AIO6 indicated that AiiO-AIO6 was an AHL-lactonase which hydrolyzes the lactone ring of AHLs. Phylogenetic analysis showed that AiiO-AIO6was classified as a member of the α/β hydrolase family with a conserved “nucleophile-acid-histidine” catalytic triad. In summary, this study showed that intracellular proteases were responsible for the reduced yields of heterologous proteins and provided an efficient strategy to enhance the extracellular production of AHL lactonase AiiO-AIO6.

2020 ◽  
Author(s):  
Rui Xia ◽  
Yalin Yang ◽  
Xingliang Pan ◽  
Chenchen Gao ◽  
Yuanyuan Yao ◽  
...  

Abstract Quorum quenching (QQ) blocks bacterial cell-to-cell communication (i.e., quorum sensing), and is a promising antipathogenic strategy to control bacterial infection via inhibition of virulence factor expression and biofilm formation. QQ enzyme AiiO-AIO6 from Ochrobactrum sp. M231 has several excellent properties and shows biotherapeutic potential against important bacterial pathogens of aquatic species. AiiO-AIO6 can be secretory expressed in Bacillus subtilis via a non-classical secretion pathway. To improve AiiO-AIO6 production, four intracellular protease-deletion mutants of B. subtilis 1A751 were constructed by individually knocking out the intracellular protease-encoding genes (tepA, ymfH, yrrN and ywpE). The AiiO-AIO6 expression plasmid pWB-AIO6BS was transformed into the B. subtilis 1A751 and its four intracellular protease-deletion derivatives. Results showed that all recombinant intracellular protease-deletion derivatives (BSΔtepA, BSΔymfH, BSΔyrrN and BSΔywpE) had a positive impact on AiiO-AIO6 production. The highest amount of AiiO-AIO6 extracellular production of BSΔywpE in shake flask reached 3530 U/mL, which was about 62% higher than that of the wild-type strain. Furthermore, LC-MS/MS analysis of the degrading products of 3-oxo-C8-HSL by purification of AiiO-AIO6 indicated that AiiO-AIO6 was an AHL-lactonase which hydrolyzes the lactone ring of AHLs. Phylogenetic analysis showed that AiiO-AIO6 was classified as a member of the α/β hydrolase family with a conserved “nucleophile-acid-histidine” catalytic triad. In summary, this study showed that intracellular proteases were responsible for the reduced yields of heterologous proteins and provided an efficient strategy to enhance the extracellular production of AHL lactonase AiiO-AIO6.


2020 ◽  
Author(s):  
Rui Xia ◽  
Yalin Yang ◽  
Xingliang Pan ◽  
Chenchen Gao ◽  
Yuanyuan Yao ◽  
...  

Abstract Quorum quenching (QQ) blocks bacterial cell-to-cell communication (i.e., quorum sensing), and is a promising antipathogenic strategy to control bacterial infection via inhibition of virulence factor expression and biofilm formation. QQ enzyme AiiO-AIO6 from Ochrobactrum sp. M231 has several excellent properties and shows biotherapeutic potential against important bacterial pathogens of aquatic species. AiiO-AIO6 can be secretory expressed in Bacillus subtilis via a non-classical secretion pathway. To improve AiiO-AIO6 production, four intracellular protease-deletion mutants of B. subtilis 1A751 were constructed by individually knocking out the intracellular protease-encoding genes ( tepA, ymfH, yrrN and ywpE ). The AiiO-AIO6 expression plasmid pWB-AIO6BS was transformed into the B. subtilis 1A751 and its four intracellular protease-deletion derivatives. Results showed that all recombinant intracellular protease-deletion derivatives (BSΔ tepA , BSΔ ymfH , BSΔ yrrN and BSΔ ywpE ) had a positive impact on AiiO-AIO6 production. The highest amount of AiiO-AIO6 extracellular production of BSΔ ywpE in shake flask reached 3530 U/mL, which was about 62% higher than that of the wild-type strain. Furthermore, LC-MS/MS analysis of the degrading products of 3-oxo-C8-HSL by purification of AiiO-AIO6 indicated that AiiO-AIO6 was an AHL-lactonase which hydrolyzes the lactone ring of AHLs. Phylogenetic analysis showed that AiiO-AIO6 was classified as a member of the α/β hydrolase family with a conserved “nucleophile-acid-histidine” catalytic triad. In summary, this study showed that intracellular proteases were responsible for the reduced yields of heterologous proteins and provided an efficient strategy to enhance the extracellular production of AHL lactonase AiiO-AIO6.


2004 ◽  
Vol 70 (9) ◽  
pp. 5238-5243 ◽  
Author(s):  
Ana M. López-Contreras ◽  
Krisztina Gabor ◽  
Aernout A. Martens ◽  
Bernadet A. M. Renckens ◽  
Pieternel A. M. Claassen ◽  
...  

ABSTRACT Clostridium acetobutylicum ATCC 824 is a solventogenic bacterium that grows heterotrophically on a variety of carbohydrates, including glucose, cellobiose, xylose, and lichenan, a linear polymer of β-1,3- and β-1,4-linked β-d-glucose units. C. acetobutylicum does not degrade cellulose, although its genome sequence contains several cellulase-encoding genes and a complete cellulosome cluster of cellulosome genes. In the present study, we demonstrate that a low but significant level of induction of cellulase activity occurs during growth on xylose or lichenan. The celF gene, located in the cellulosome-like gene cluster and coding for a unique cellulase that belongs to glycoside hydrolase family 48, was cloned in Escherichia coli, and antibodies were raised against the overproduced CelF protein. A Western blot analysis suggested a possible catabolite repression by glucose or cellobiose and an up-regulation by lichenan or xylose of the extracellular production of CelF by C. acetobutylicum. Possible reasons for the apparent inability of C. acetobutylicum to degrade cellulose are discussed.


2005 ◽  
Vol 49 (4) ◽  
pp. 1495-1501 ◽  
Author(s):  
Ayush Kumar ◽  
Elizabeth A. Worobec

ABSTRACT Serratia marcescens is an important nosocomial agent known for causing various infections in immunocompromised individuals. Resistance of this organism to a broad spectrum of antibiotics makes the treatment of infections very difficult. This study was undertaken to identify multidrug resistance efflux pumps in S. marcescens. Three mutant strains of S. marcescens were isolated in vitro by the serial passaging of a wild-type strain in culture medium supplemented with ciprofloxacin, norfloxacin, or ofloxacin. Fluoroquinolone accumulation assays were performed to detect the presence of a proton gradient-dependent efflux mechanism. Two of the mutant strains were found to be effluxing norfloxacin, ciprofloxacin, and ofloxacin, while the third was found to efflux only ofloxacin. A genomic library of S. marcescens wild-type strain UOC-67 was constructed and screened for RND pump-encoding genes by using DNA probes for two putative RND pump-encoding genes. Two different loci were identified: sdeAB, encoding an MFP and an RND pump, and sdeCDE, encoding an MFP and two different RND pumps. Northern blot analysis revealed overexpression of sdeB in two mutant strains effluxing fluoroquinolones. Analysis of the sdeAB and sdeCDE loci in Escherichia coli strain AG102MB, deficient in the RND pump (AcrB), revealed that gene products of sdeAB are responsible for the efflux of a diverse range of substrates that includes ciprofloxacin, norfloxacin, ofloxacin, chloramphenicol, sodium dodecyl sulfate, ethidium bromide, and n-hexane, while those of sdeCDE did not result in any change in susceptibilities to any of these agents.


2021 ◽  
Vol 22 (18) ◽  
pp. 9862
Author(s):  
Xudan Xu ◽  
Tian Ye ◽  
Wenping Zhang ◽  
Tian Zhou ◽  
Xiaofan Zhou ◽  
...  

Quorum sensing (QS) is a microbial cell–cell communication mechanism and plays an important role in bacterial infections. QS-mediated bacterial infections can be blocked through quorum quenching (QQ), which hampers signal accumulation, recognition, and communication. The pathogenicity of numerous bacteria, including Xanthomonas campestris pv. campestris (Xcc), is regulated by diffusible signal factor (DSF), a well-known fatty acid signaling molecule of QS. Cupriavidus pinatubonensis HN-2 could substantially attenuate the infection of XCC through QQ by degrading DSF. The QQ mechanism in strain HN-2, on the other hand, is yet to be known. To understand the molecular mechanism of QQ in strain HN-2, we used whole-genome sequencing and comparative genomics studies. We discovered that the fadT gene encodes acyl-CoA dehydrogenase as a novel QQ enzyme. The results of site-directed mutagenesis demonstrated the requirement of fadT gene for DSF degradation in strain HN-2. Purified FadT exhibited high enzymatic activity and outstanding stability over a broad pH and temperature range with maximal activity at pH 7.0 and 35 °C. No cofactors were required for FadT enzyme activity. The enzyme showed a strong ability to degrade DSF. Furthermore, the expression of fadT in Xcc results in a significant reduction in the pathogenicity in host plants, such as Chinese cabbage, radish, and pakchoi. Taken together, our results identified a novel DSF-degrading enzyme, FadT, in C. pinatubonensis HN-2, which suggests its potential use in the biological control of DSF-mediated pathogens.


2007 ◽  
Vol 189 (12) ◽  
pp. 4456-4464 ◽  
Author(s):  
Dominique Vidal-Ingigliardi ◽  
Shawn Lewenza ◽  
Nienke Buddelmeijer

ABSTRACT Apolipoprotein N-acyl transferase (Lnt) is an essential membrane-bound protein involved in lipid modification of all lipoproteins in gram-negative bacteria. Essential residues in Lnt of Escherichia coli were identified by using site-directed mutagenesis and an in vivo complementation assay. Based on sequence conservation and known protein structures, we predict a model for Lnt, which is a member of the CN hydrolase family. Besides the potential catalytic triad E267-K335-C387, four residues that directly affect the modification of Braun's lipoprotein Lpp are absolutely required for Lnt function. Residues Y388 and E389 are part of the hydrophobic pocket that constitutes the active site. Residues W237 and E343 are located on two flexible arms that face away from the active site and are expected to open and close upon the binding and release of phospholipid and/or apolipoprotein. Substitutions causing temperature-dependent effects were located at different positions in the structural model. These mutants were not affected in protein stability. Lnt proteins from other proteobacteria, but not from actinomycetes, were functional in vivo, and the essential residues identified in Lnt of E. coli are conserved in these proteins.


2020 ◽  
Author(s):  
Riho Teras ◽  
Hanna Ainelo ◽  
Marge Puhm

<p>Pseudomonas putida rapidly forms a biofilm, after which its biomass usually disperses to half its initial amount. We have observed different biofilm dynamics of P. putida in a complex medium LB and a minimal medium M9+glc+CAA and inquired about the importance of extracellular factors for the formation of P. putida biofilm.</p> <p>The proteinaceous component of LB increases the biomass of P. putida biofilm. Supplementation of M9 with tryptone but not CAA increased the biofilm biomass. Proteinase K treatment of LB medium reduced the biomass of P. putida biofilm. At the same time, growth rate or maximum OD of planktic bacteria in used media did not correlate with biofilm biomass of the same media. Thus, peptides appeared to have a positive effect on the biofilm as an extracellular factor and not as a source of C and N.</p> <p>We replaced tryptone in M9 medium with positively charged poly-L-lysine (MW. 1000-5000 Da), negatively charged poly-L-glutaminic acid (MW. 1500-5500 Da) or neutral poly-LD-alanine (MW. 3000-7000). Poly-lysine and poly-glutamic acid had a slight positive effect on the biomass of P. putida wild type strain PSm biofilm and poly-alanine did not affect the biofilm.</p> <p>We have previously shown that overexpression of fis in P. putida strain F15 increases biofilm biomass by increasing the lapA expression, the main adhesin gene of biofilm. Using media similar to that used for the wild-type strain for strain F15, we ascertained that only poly-lysine out of these three polypeptides restored the positive effect of fis-overexpression on the biofilm biomass. At the same time, the positive impact of fis-overexpression was absent in lapA deletion mutant strain, but not in lapF deletion mutant strain.</p> <p>In conclusion, the formation of P. putida biofilm depends on polypeptides in the environment. The enhancing effect of positively charged polypeptides appears to be evident in the presence of LapA, a key factor for P. putida biofilm.</p>


2008 ◽  
Vol 75 (4) ◽  
pp. 1135-1143 ◽  
Author(s):  
Karina Pokusaeva ◽  
Mary O'Connell-Motherway ◽  
Aldert Zomer ◽  
Gerald F. Fitzgerald ◽  
Douwe van Sinderen

ABSTRACT Two α-glucosidase-encoding genes (agl1 and agl2) from Bifidobacterium breve UCC2003 were identified and characterized. Based on their similarity to characterized carbohydrate hydrolases, the Agl1 and Agl2 enzymes are both assigned to a subgroup of the glycosyl hydrolase family 13, the α-1,6-glucosidases (EC 3.2.1.10). Recombinant Agl1 and Agl2 into which a His12 sequence was incorporated (Agl1His and Agl2His, respectively) exhibited hydrolytic activity towards panose, isomaltose, isomaltotriose, and four sucrose isomers—palatinose, trehalulose, turanose, and maltulose—while also degrading trehalose and, to a lesser extent, nigerose. The preferred substrates for both enzymes were panose, isomaltose, and trehalulose. Furthermore, the pH and temperature optima for both enzymes were determined, showing that Agl1His exhibits higher thermo and pH optima than Agl2His. The two purified α-1,6-glucosidases were also shown to have transglycosylation activity, synthesizing oligosaccharides from palatinose, trehalulose, trehalose, panose, and isomaltotriose.


Sign in / Sign up

Export Citation Format

Share Document