Accurate physical modeling and synchronization control of dual-linear-motor-driven gantry with dynamic load

2020 ◽  
Author(s):  
Chao Li ◽  
Zheng Chen ◽  
Can Yang ◽  
Bin Yao ◽  
Shiliang Pu

Abstract To achieve high-accuracy tracking of dual-linear-motor-driven (DLMD) gantry, high-level synchronization between redundant actuators is a nonnegligible factor and also a difficult issue to be solved prior. Especially, when both XY axes are simultaneously operating to accomplish complex tasks efficiently, additional coupling effects will be generated by the dynamic load presented on the crossbeam, which makes the synchronization issue more complicated compared to the case with static load. However, due to the absence of an accurate model to fully reveal the complete coupling characteristics, existing approaches to this issue still have inherent limitations. Therefore, this paper focuses on the systematic physical modeling and synchronization control of DLMD gantry with a dynamic load presented on the crossbeam. A complete coupling mathematical model is established firstly, by fully considering two linear motions (X-axis and Y-axis) and also including the additional rotational motion of the crossbeam. Built upon the effective model information, corresponding solutions by compensating the dynamic load effects and actively controlling the rotational dynamic to regulate the internal forces have been proposed, leading to a novel adaptive robust synchronization control method. Comparative experiments are carried out, and the results show the effectiveness and superiority of the proposed method in dealing with synchronization issue subjected to dynamic load effects.

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 152
Author(s):  
Litong Lyu ◽  
Xiao Liang ◽  
Jingbo Guo

Segment assembling is one of the principle processes during tunnel construction using shield tunneling machines. The segment erector is a robotic manipulator powered by a hydraulic system to assemble prefabricated concrete segments onto the excavated tunnel surface. Nowadays, automation of the segment erector has become one of the definite developing trends to further improve the efficiency and safety during construction; thus, closed-loop motion control is an essential technology. Within the segment erector, the lifting gantry is driven by dual cylinders to lift heavy segments in the radial direction. Different from the dual-cylinder mechanism used in other machines such as forklifts, the lifting gantry usually works at an inclined angle, leading to unbalanced loads on the two sides. Although strong guide rails are applied to ensure synchronization, the gantry still occasionally suffers from chattering, “pull-and-drag”, or even being stuck in practice. Therefore, precise motion tracking control as well as high-level synchronization of the dual cylinders have become essential for the lifting gantry. In this study, a complete dynamics model of the dual-cylinder lifting gantry is constructed, considering the linear motion as well as the additional rotational motion of the crossbeam, which reveals the essence of poor synchronization. Then, a two-level synchronization control scheme is synthesized. The thrust allocation is designed to coordinate the dual cylinders and keep the rotational angle of the crossbeam within a small range. The motion tracking controller is designed based on the adaptive robust control theory to guarantee the linear motion tracking precision. The theoretical performance is analyzed with corresponding proof. Finally, comparative simulations are conducted and the results show that the proposed scheme achieves high-precision motion tracking performance and simultaneous high-level synchronization of dual cylinders under unbalanced loads.


2012 ◽  
Vol 220-223 ◽  
pp. 1012-1017
Author(s):  
Qing Guo ◽  
Dan Jiang

This paper has introduced electromechanical coupling characteristics in the lower extremity exoskeleton systems, considered model ,according to legs supporting gait when people walking, established the load torque compensation model , and a mathematical model of knee position control system which is made of the servo valve, hydraulic cylinders and other hydraulic components, designed hydraulic cylinder position control loop in case of existing load force interference compensation, and used the method of combining the PID and lead correction network for frequency domain design ,ensured system to meet a certain stability margin. The simulation results show that this position control method can servo on the knee angular displacement of normal human walking, reached a certain exoskeleton boost effect, at the same time, met the needs of human-machine coordinated motion.


2013 ◽  
Vol 842 ◽  
pp. 530-535 ◽  
Author(s):  
Zeng Meng Zhang ◽  
Yong Jun Gong ◽  
Jiao Yi Hou ◽  
Han Peng Wu

The water hydraulic reciprocating plunger pump driven by linear motor is suitable to deep sea application with high efficiency and variable control. Aiming to study the principle structure and working characteristics of the pump, two patterns of valve and piston distribution were designed. And the control method and the performance were analyzed by simulation based on the AMESim model. The results show that the pressure and flow pulsation of piston type pump are much smaller than the valve type, even though the piston type is large in scale and works at low flow rate. Compared with a valve distribution tri-linear-motor reciprocating plunger pump (VDTLMP), as the flow rate of the piston distribution double linear motor reciprocating plunger pump (PDDLMP) is decreased from 36.7 L/min to 21.2 L/min theoretically, the pressure pulsation amplitude is decreased from 46% to 2%, and the flow pulsation rate is also decreased from 0.266 to 0.007. These results contribute to the research on deep-sea water hydraulic power pack and direct drive pump with high efficiency and energy conservation.


2020 ◽  
Vol 9 (2) ◽  
pp. 155-168
Author(s):  
Ziwang Lu ◽  
◽  
Guangyu Tian ◽  

Torque interruption and shift jerk are the two main issues that occur during the gear-shifting process of electric-driven mechanical transmission. Herein, a time-optimal coordination control strategy between the the drive motor and the shift motor is proposed to eliminate the impacts between the sleeve and the gear ring. To determine the optimal control law, first, a gear-shifting dynamic model is constructed to capture the drive motor and shift motor dynamics. Next, the time-optimal dual synchronization control for the drive motor and the time-optimal position control for the shift motor are designed. Moreover, a switched control for the shift motor between a bang-off-bang control and a receding horizon control (RHC) law is derived to match the time-optimal dual synchronization control strategy of the drive motor. Finally, two case studies are conducted to validate the bang-off-bang control and RHC. In addition, the method to obtain the appropriate parameters of the drive motor and shift motor is analyzed according to the coordination control method.


2014 ◽  
Vol 518 ◽  
pp. 66-70 ◽  
Author(s):  
Wen Bo Bao ◽  
Shao Feng Zhang ◽  
Gao Hao Di ◽  
Wei Wei Ji ◽  
Li Hui Qu

This paper studies that dynamic load affects mechanical properties of materials about composite tail ore different replacement rate, different PVA fiber volume content and different plate thickness. The phenomenon of the tests and results showed that:1) PVA tailings cement-based composite materials has low damage, strong integrity and strong energy dissipation under dynamic loading. 2) When the volume content is 2%, material resistance effect is best. 3) The study proves that 30 mm plate have good ductility and Size effect influence the material mechanics performance. 4) PVA tailings cement-based composite materials under dynamic loads ,as tailings content increases the performance indicators reduced. So the engineering applications recommended replacement rate of the tailings is 50%.


1981 ◽  
Vol PER-1 (11) ◽  
pp. 21-22
Author(s):  
Takashi Umemori ◽  
Koichi Matsuoka ◽  
Kazumi Matsui ◽  
Takao Otsubo

2001 ◽  
Vol 126 (6) ◽  
pp. 727-729 ◽  
Author(s):  
Min Wang ◽  
Mark W. Farnham ◽  
Claude E. Thomas

Downy mildew, incited by the biotrophic fungal parasite, Peronospora parasitica (Pers. Fr.) Fr., is one of the most destructive diseases of broccoli (Brassica oleracea L., Italica Group) and other related crop species throughout the world. Cultivation of resistant cultivars is the most desirable control method because it provides a practical, long-term, and environmentally benign means of limiting damage from this disease. The commercial hybrid cultivar, Everest, has been shown previously to contain a high level of downy mildew resistance. Doubled-haploid (DH) lines developed from that hybrid were also shown to exhibit a similar, high level of resistance at the three- to four-leaf stage. To determine the mode of inheritance of this true leaf resistance, the resistant DH line was crossed to a susceptible line (derived from `Marathon') to produce an F1 hybrid. Subsequently, F2 and backcross (BC) populations were developed from the hybrid. In addition, a DH population of ≈100 lines was developed from the same F1 used to create the F2 and BC. All populations were evaluated for response to artificial inoculation with P. parasitica at the three- to four-leaf stage. F1 plants were resistant like the resistant parent and F2 populations segregated approximately nine resistant to seven susceptible. Using the resistant parent as recurrent parent, BC populations contained all resistant plants, while the BC to the susceptible parent fit a 1 resistant: 3 susceptible segregation ratio. These results can be explained by a model with two complementary dominant genes. This model was confirmed by the DH population that segregated ≈1:3, resistant to susceptible. Due to the dominant nature of this resistance, controlling genes should be easily incorporated into F1 hybrids and used commercially to prevent downy mildew.


Sign in / Sign up

Export Citation Format

Share Document