scholarly journals Fraud Detection: A Study of AdaBoost Classifier and K-Means Clustering

Author(s):  
Anwesha Mishra

Abstract Fraud is a problem which can affect the economy greatly. Billions of dollars are lost because of fraud cases. These problems can occur through credit cards, insurance and bank accounts. Currently there have been many studies for preventing fraud. Machine learning techniques have helped in analysing fraud detection. These include many supervised and unsupervised models. Neural networks can be used for fraud detection. The dataset for the present work was collected from a research collaboration between Worldline and the Machine Learning Group of Université Libre de Bruxelles on the topic of big data mining and fraud detection. It consists of the time and amount of various transactions of European card holders during the month of September in 2013. This paper gives an analysis of the past and the present models used for fraud detection and presents a study of using K-Means Clustering and AdaBoost Classifier by comparing their accuracies.

2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2012 ◽  
Author(s):  
Hashem Koohy

In the era of explosion in biological data, machine learning techniques are becoming more popular in life sciences, including biology and medicine. This research note examines the rise and fall of the most commonly used machine learning techniques in life sciences over the past three decades.


2016 ◽  
Vol 27 (8) ◽  
pp. 857-870 ◽  
Author(s):  
Golrokh Mirzaei ◽  
Anahita Adeli ◽  
Hojjat Adeli

AbstractAlzheimer’s disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.


Artificial intelligence (AI) can be implemented using Machine Learning which allows the computing to potentially robotically study and improve from its previous experiences without being manually typed. Data can be accessed and used by the computer programs developed using Machine learning. This paper mainly focused on implementation of machine learning in the arena of sports to predict the captivating team of an IPL match. Cricket is a popular uncertain sport, particularly the T-20 format, there’s a possibility of the complete game play to change with the effect of any single over. Millions of spectators watch the Indian Premier League (IPL) every year, hence it becomes a real-time problem to compose a technique that will forecast the conclusion of matches. Many aspects and features determine the result of a cricket match each of which has a weighted impact on the result of a T20 cricket match. This paper describes all those features in detail. A multivariate regression-based approach is proposed to measure the team's points in the league. The past performance of every team determines its probability of winning a match against a particular opponent. Finally, a set of seven factors or attributes is identified that can be used for predicting the IPL match winner. Various machine learning models were trained and used to perform within the time lapse between the toss and initiation of the match, to predict the winner. The performance of the model developed are evaluated with various classification techniques where Random Forest and Decision Tree have given good results.


Sign in / Sign up

Export Citation Format

Share Document