scholarly journals Genetic Chinese Medicine Network Pharmacology Research, Quercetin Improves Drug Resistance in Acute Myeloid Leukemia by Targeting CXCL10

Author(s):  
Hu Linjun ◽  
QILIANG LU ◽  
YANG LIU ◽  
JUNJUN ZHAO ◽  
ZHI ZENG ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is the most common acute leukemia in adults and is a highly heterogeneous and fatal disease. At present, the main method of treatment of AML is chemotherapy, but patients who relapse often develop resistance and are not sensitive to chemotherapy. Chinese medicine network pharmacology can provide new ideas about improving AML resistance.Methods: The gene expression data of relapsed drug-resistant AML and primary AML are from Gene Expression Omnibus (GEO) database. Based on the network pharmacology of traditional Chinese medicine, the effective components and target genes of Jiedu Huayu Decoction were analyzed. we performed Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) analyses, Protein-protein interaction (PPI) network and construction on overlapping genes. We will perform prognostic analysis and gene correlation analysis of overlapping genes in GEPIA. The binding energy between the differential gene and the active ingredient of the drug was studied by molecular docking.Results: We found that quercetin, the active ingredient in Jiedu Huayu Decoction, can target CXCL10, thereby improving AML resistance.Conclusions: In this study, we found that quercetin improves drug resistance in acute myeloid leukemia by targeting CXCL10 based on the GEO database and the network pharmacology study of Chinese medicine.

2020 ◽  
Author(s):  
Tingting Fang ◽  
Lanqin Liu ◽  
wenjun liu

Abstract Background. Acute myeloid leukemia (AML) is a common malignant tumor of the hematopoietic system. How to extend the survival time of AML patients and improve their prognosis is still a major medical problem. Chinese medicine has a long history in treating AML. Tripterygium wilfordii (TW) is a traditional Chinese medicine. With the deepening of pharmacological research of traditional Chinese medicine, triptolide, one of its active ingredients, has been proven to have a positive effect on the treatment of AML. Therefore,this study aimed on studying the potential therapeutic targets and pharmacological mechanism of TW in Acute myeloid leukemia (AML) based on network pharmacology.Methods. The active components of TW were obtained by network pharmacology through oral bioavailability, drug-likeness filtration. Comparative analysis was used to study the overlapping genes between active ingredient’s targets and AML treatment-related targets. Using STRING database to analyze interactions between overlapping genes. KEGG pathway analysis and Gene Ontology enrichment analysis were conducted in DAVID. These genes were analyzed for survival in OncoLnc database.Key findings. We screened 53 active ingredients, the results of comparative analysis showed that 8 active ingredients had an effect on AML treatment. Based on the active ingredients and overlapping genes, we constructed the Drug-Compounds-Genes-Disease Network. Survival analysis of overlapping genes indicated that some targets possess a significant influence on patients’ survival and prognosis. The enrichment analysis showed that the main pathways of targets are Toll-like receptor signaling pathway, NF-kappa B signaling pathway and HIF-1 signaling pathway.Conclusion. This study, using a network pharmacologic approach, provides another strategy that can help us to understand the mechanisms by which TW treats AML comprehensively.


2020 ◽  
Author(s):  
Tingting Fang ◽  
Lanqin Liu ◽  
wenjun liu

Abstract Background. Acute myeloid leukemia (AML) is a common malignant tumor of the hematopoietic system. How to extend the survival time of AML patients and improve their prognosis is still a major medical problem. Chinese medicine has a long history in treating AML. Tripterygium wilfordii (TW) is a traditional Chinese medicine. With the deepening of pharmacological research of traditional Chinese medicine, triptolide, one of its active ingredients, has been proven to have a positive effect on the treatment of AML. Therefore,this study aimed on studying the potential therapeutic targets and pharmacological mechanism of TW in Acute myeloid leukemia (AML) based on network pharmacology. Methods. The active components of TW were obtained by network pharmacology through oral bioavailability, drug-likeness filtration. Comparative analysis was used to study the overlapping genes between active ingredient’s targets and AML treatment-related targets. Using STRING database to analyze interactions between overlapping genes. KEGG pathway analysis and Gene Ontology enrichment analysis were conducted in DAVID. These genes were analyzed for survival in OncoLnc database. Results. We screened 53 active ingredients, the results of comparative analysis showed that 8 active ingredients had an effect on AML treatment. Based on the active ingredients and overlapping genes, we constructed the Drug-Compounds-Genes-Disease Network. Survival analysis of overlapping genes indicated that some targets possess a significant influence on patients’ survival and prognosis. The enrichment analysis showed that the main pathways of targets are Toll-like receptor signaling pathway, NF-kappa B signaling pathway and HIF-1 signaling pathway. Conclusion. This study, using a network pharmacologic approach, provides another strategy that can help us to understand the mechanisms by which TW treats AML comprehensively.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongliang Liu ◽  
Guiqin Wang ◽  
Jiasi Zhang ◽  
Xue Chen ◽  
Huailong Xu ◽  
...  

Abstract Background Leukemia stem cells (LSCs) are responsible for the initiation, progression, and relapse of acute myeloid leukemia (AML). Therefore, a therapeutic strategy targeting LSCs is a potential approach to eradicate AML. In this study, we aimed to identify LSC-specific surface markers and uncover the underlying mechanism of AML LSCs. Methods Microarray gene expression data were used to investigate candidate AML-LSC-specific markers. CD9 expression in AML cell lines, patients with AML, and normal donors was evaluated by flow cytometry (FC). The biological characteristics of CD9-positive (CD9+) cells were analyzed by in vitro proliferation, chemotherapeutic drug resistance, migration, and in vivo xenotransplantation assays. The molecular mechanism involved in CD9+ cell function was investigated by gene expression profiling. The effects of alpha-2-macroglobulin (A2M) on CD9+ cells were analyzed with regard to proliferation, drug resistance, and migration. Results CD9, a cell surface protein, was specifically expressed on AML LSCs but barely detected on normal hematopoietic stem cells (HSCs). CD9+ cells exhibit more resistance to chemotherapy drugs and higher migration potential than do CD9-negative (CD9−) cells. More importantly, CD9+ cells possess the ability to reconstitute human AML in immunocompromised mice and promote leukemia growth, suggesting that CD9+ cells define the LSC population. Furthermore, we identified that A2M plays a crucial role in maintaining CD9+ LSC stemness. Knockdown of A2M impairs drug resistance and migration of CD9+ cells. Conclusion Our findings suggest that CD9 is a new biomarker of AML LSCs and is a promising therapeutic target.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2024-2024
Author(s):  
Michael Heuser ◽  
Luzie U. Wingen ◽  
Doris Steinemann ◽  
Gunnar Cario ◽  
Nils von Neuhoff ◽  
...  

Abstract Resistance to induction chemotherapy is of independent prognostic value in acute myeloid leukemia (AML). DNA microarrays were used to determine the gene-expression profile of AML blasts in 38 patients with good or poor response to induction chemotherapy. We selected an 11-sample training set, applying prediction analysis of microarrays (PAM) to devise a drug-response predictor which was tested on the remaining 27 samples and an independent set of samples recently published (Bullinger et al. 2004). Our drug-response predictor with 46 clones divided the 27 samples into two prognostic subgroups, the poor response group having a significantly shorter overall survival (P= .021). A subset of these 46 clones was sufficient to divide the published 62-sample test-set with intermediate risk cytogenetics into prognostically relevant subgroups (P= .028), adding prognostic information to that of known risk factors in multivariate analysis (hazard ratio, 2.8; 95 percent confidence interval, 1.4 to 5.8; P= .005). Thirteen of 39 drug resistance-enriched genes are known to be upregulated in hematopoietic stem/progenitor cells, and the expression pattern in normal CD34+ cells is highly correlated to the drug-resistance signature. This suggests that drug resistant AMLs show molecular features of hematopoietic stem/progenitor cells and can be identified by a characteristic gene-expression profile.


2020 ◽  
Author(s):  
Yongliang Liu ◽  
Guiqin Wang ◽  
Jiasi Zhang ◽  
Xue Chen ◽  
Huailong Xu ◽  
...  

Abstract Background: Leukemia stem cells (LSCs) are responsible for the initiation, progress and relapse of acute myeloid leukemia (AML). Therefore, the therapy strategy of targeting LSCs is hopeful to eradicate AML. In this study, we aim to identify LSC-specific surface markers and uncover the underlying mechanism of AML LSCs.Methods: Microarray gene expression data were used to investigate the candidate AML-LSC specific markers. CD9 expression was evaluated by flow cytometry in AML cell lines, patients with AML and normal donors. The biological characteristics of CD9-positive (CD9+) cells were analyzed by in vitro proliferation, chemotherapeutic drug resistance, migration and in vivo xenotransplantation assays. The molecular mechanism involved in CD9+ cell function was investigated by gene expression profiling. Effect of alpha-2-macroglobulin (A2M) on CD9+ cells was analyzed by proliferation, drug resistance and migration assays.Results: CD9 as a cell surface protein was specifically expressed on AML LSCs, but almost not expressed on normal hematopoietic stem cells (HSCs). CD9+ cells exhibited more resistance to chemotherapy drugs and higher migration potential than CD9-negative (CD9-) cells. More importantly, CD9+ cells possess the ability to reconstitute human AML in immunocompromised mice and promote tumor growth, suggesting CD9+ cells define the LSC population. Furthermore, we identified A2M plays a crucial role in CD9+ LSCs stemness maintenance. Down-regulation of A2M impairs drug-resistance and migration of CD9+ cells.Conclusion: Our findings suggest that CD9 is a new biomarker of AML LSCs and may serve as a promising therapeutic target.


2021 ◽  
Author(s):  
Yongliang Liu ◽  
Guiqin Wang ◽  
Jiasi Zhang ◽  
Xue Chen ◽  
Huailong Xu ◽  
...  

Abstract Background: Leukemia stem cells (LSCs) are responsible for the initiation, progression and relapse of acute myeloid leukemia (AML). Therefore, a therapeutic strategy targeting LSCs is a potential approach to eradicate AML. In this study, we aimed to identify LSC-specific surface markers and uncover the underlying mechanism of AML LSCs.Methods: Microarray gene expression data were used to investigate candidate AML-LSC-specific markers. CD9 expression in AML cell lines, patients with AML and normal donors was evaluated by flow cytometry (FC). The biological characteristics of CD9-positive (CD9+) cells were analyzed by in vitro proliferation, chemotherapeutic drug resistance, migration and in vivo xenotransplantation assays. The molecular mechanism involved in CD9+ cell function was investigated by gene expression profiling. The effects of alpha-2-macroglobulin (A2M) on CD9+ cells were analyzed with regard to proliferation, drug resistance and migration.Results: CD9, a cell surface protein, was specifically expressed on AML LSCs but barely detected on normal hematopoietic stem cells (HSCs). CD9+ cells exhibit more resistance to chemotherapy drugs and higher migration potential than do CD9-negative (CD9-) cells. More importantly, CD9+ cells possess the ability to reconstitute human AML in immunocompromised mice and promote leukemia growth, suggesting that CD9+ cells define the LSC population. Furthermore, we identified that A2M plays a crucial role in maintaining CD9+ LSC stemness. Knockdown of A2M impairs drug resistance and migration of CD9+ cells.Conclusion: Our findings suggest that CD9 is a new biomarker of AML LSCs and is a promising therapeutic target.


2020 ◽  
Author(s):  
Yongliang Liu ◽  
Guiqin Wang ◽  
Jiasi Zhang ◽  
Xue Chen ◽  
Huailong Xu ◽  
...  

Abstract Background: Leukemia stem cells (LSCs) are responsible for the initiation, progressing and relapse of acute myeloid leukemia (AML). Therefore, the therapy strategy of targeting LSCs is hopeful to eradicate AML. In this study, we aimed to identify LSCs-specific surface markers and uncover the underlying mechanism of AML LSCs.Methods: Microarray gene expression data were used to investigate the candidate AML-LSCs specific markers. CD9 expression was evaluated by flow cytometry (FC) in AML cell lines, patients with AML and normal donors. The biological characteristics of CD9-positive (CD9+) cells were analyzed by in vitro proliferation, chemotherapeutic drug resistance, migration and in vivo xenotransplantation assays. The molecular mechanism involved in CD9+ cell function was investigated by gene expression profiling. Effects of alpha-2-macroglobulin (A2M) on CD9+ cells were analyzed in the aspects of proliferation, drug resistance and migration.Results:CD9, as a cell surface protein, is specifically expressed on AML LSCs, but barely can be detected on normal hematopoietic stem cells (HSCs). CD9+ cells exhibits more resistance to chemotherapy drugs and higher migration potential than CD9-negative (CD9-) cells. More importantly, CD9+ cells possess the ability to reconstitute human AML in immunocompromised mice and promote leukemia growth, suggesting CD9+ cells define the LSCs population. Furthermore, we identified A2M as an important role in CD9+ LSCs stemness maintenance. Knock down of A2M impairs drug-resistance and migration of CD9+ cells.Conclusion: Our findings suggested that CD9 is a new biomarker of AML LSCs and may serve as a promising therapeutic target.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1323 ◽  
Author(s):  
Boyer ◽  
Gonzales ◽  
Barthélémy ◽  
Marceau-Renaut ◽  
Peyrouze ◽  
...  

ABCB1 is a member of the ATP binding cassette transporter family and high ABCB1 activity is considered as a poor prognostic factor in acute myeloid leukemia (AML) treated with intensive chemotherapy, its direct relation with drug resistance remains unclear. We evaluated ABCB1 activity in relation with clinical parameters and treatment response to standard chemotherapy in 321 patients with de novo AML. We assessed multiple clinical relationships of ABCB1 activity—ex vivo drug resistance, gene expression, and the ABCB1 inhibitor quinine were evaluated. ABCB1 activity was observed in 58% of AML and was linked to low white blood cell count, high expression of CD34, absence of FLT3-ITD, and absence of mutant NPM1. Moreover, ABCB1 activity was associated with worse overall- and event-free survival. However, ABCB1 activity did not directly lead to ex vivo drug resistance to anthracyclines. We found that ABCB1 was highly correlated with gene expressions of BAALC, CD34, CD200, and CD7, indicating that ABCB1 expression maybe a passenger characteristic of high-risk AML. Furthermore, ABCB1 was inversely correlated to HOX cluster genes and CD33. Thus, low ABCB1 AML patients benefited specifically from anti-CD33 treatment by gemtuzumab ozogamicin in addition to standard chemotherapy. We showed prognostic importance of ABCB1 gene expression, protein expression, and activity. Furthermore, ABCB1 was not directly linked to drug resistance, ABCB1 inhibition did not improve outcome of high ABCB1 AML patients and thus high ABCB1 may represent a passenger characteristic of high-risk AML.


Sign in / Sign up

Export Citation Format

Share Document