scholarly journals Enhanced Nitrogen Removal of Wastewater at Low Temperature by Iterative Screening of Cold-Tolerant Denitrifying Bacteria

Author(s):  
Jin Qu ◽  
Zhanwang zheng ◽  
Ruojin Zhao ◽  
Yinyan Chen ◽  
Yiyi Li ◽  
...  

Abstract The biological denitrification for wastewater treatment in winter is often seriously compromised due to the effects of low-temperature (<13 °C) on metabolic activity of microorganism. In this study, an excellent cold-tolerant denitrifying bacterium, Moraxella osloensis LT-01 was isolated by iterative domestication. The strain LT-01 retained about 60% maximal growth activity at 10 °C. Under initial concentrations of 100 mg/L, average ammonium, nitrate and nitrite removal efficiencies for domestic wastewater (C/N 4:1) at 10 °C were 70.35%, 65.39% and 61.74% in 24 h, respectively. Nitrogen balance analysis showed that about 46% of TN was directed toward in the dissimilation form of gas, and 16% of TN was assimilated for cell growth. Key genes hydroxylamine reductase gene (HAO) and nitrite reductase (NirS) involved in nitrification and denitrification processes were identified by gene-specific PCR, indicating that strain LT-01 perform nitrogen removal efficiently via unique simultaneous nitrification and denitrification. These results suggest the bacterium LT-01 has great potential as an effective performer for treating domestic wastewater in winter.

RSC Advances ◽  
2018 ◽  
Vol 8 (48) ◽  
pp. 27417-27422 ◽  
Author(s):  
Peng Jin ◽  
Yinyan Chen ◽  
Zhanwang Zheng ◽  
Qizhen Du

A novel simultaneous nitrification and denitrification Klebsiella sp. exhibits high nitrogen removal efficiency under low-temperature and low C/N wastewater.


2019 ◽  
Vol 9 (9) ◽  
pp. 1937 ◽  
Author(s):  
Yinyan Chen ◽  
Peng Jin ◽  
Zhiwen Cui ◽  
Tao Xu ◽  
Ruojin Zhao ◽  
...  

Herein, we isolated Janthinobacterium svalbardensis F19 from sludge sediment. Strain F19 can simultaneously execute heterotrophic nitrification and aerobic denitrification under aerobic conditions. The organism exhibited efficient nitrogen removal at a C/N ratio of 2:1, with an average removal rate of 0.88 mg/L/h, without nitrite accumulation. At a C/N ratio of 2, an initial pH of 10.0, a culturing temperature of 25 °C, and sodium acetate as the carbon source, the removal efficiencies of ammonium, nitrate, nitrite, and hydroxylamine were 96.44%, 92.32%, 97.46%, and 96.69%, respectively. The maximum removal rates for domestic wastewater treatment for ammonia and total nitrogen were 98.22% and 92.49%, respectively. Gene-specific PCR amplification further confirmed the presence of napA, hao, and nirS genes, which may contribute to the heterotrophic nitrification and aerobic denitrification capacity of strain F19. These results indicate that this bacterium has potential for efficient nitrogen removal at low C/N ratios from domestic wastewater.


2005 ◽  
Vol 51 (10) ◽  
pp. 85-92 ◽  
Author(s):  
C. Chiemchaisri ◽  
K. Yamamoto

Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid–liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 °C. As the temperature was stepwise decreased from 25 to 5 °C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 °C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2–3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Pradyut Kundu ◽  
Arnab Pramanik ◽  
Arpita Dasgupta ◽  
Somnath Mukherjee ◽  
Joydeep Mukherjee

A heterotrophic carbon utilizing microbe (R31) capable of simultaneous nitrification and denitrification (SND) was isolated from wastewater of an Indian slaughterhouse. From an initial COD value of 583.0 mg/L, 95.54% was removed whilst, from a startingNH4+-N concentration of 55.7 mg/L, 95.87% was removed after 48 h contact. The concentrations of the intermediates hydroxylamine, nitrite, and nitrate were low, thus ensuring nitrogen removal. Aerobic denitrification occurring during ammonium removal by R31 was confirmed by utilization of both nitrate and nitrite as nitrogen substrates. Glucose and succinate were superior while acetate and citrate were poor substrates for nitrogen removal. Molecular phylogenetic identification, supported by chemotaxonomic and physiological properties, assigned R31 as a close relative ofChryseobacterium haifense. TheNH4+-N utilization rate and growth of strain R31 were found to be higher at C/N = 10 in comparison to those achieved with C/N ratios of 5 and 20. Monod kinetic coefficients, half saturation concentration(Ks), maximum rate of substrate utilization(k), yield coefficient,(Y)and endogenous decay coefficient(Kd)indicated potential application of R31 in large-scale SND process. This is the first report on concomitant carbon oxidation, nitrification, and denitrification in the genusChryseobacteriumand the associated kinetic coefficients.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yi Xu ◽  
Tengxia He ◽  
Zhenlun Li ◽  
Qing Ye ◽  
Yanli Chen ◽  
...  

The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.


2015 ◽  
Vol 5 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Haon-Yao Chen ◽  
Pui-Kwan Andy Hong ◽  
Ping-Yi Yang ◽  
Kok Kwang Ng ◽  
Sheng-Fu Yang ◽  
...  

Concurrent nitrification and denitrification (CND) are natural phenomena in the soil environment that can be applied in wastewater treatment for enhanced total nitrogen removal. However, significant renovation is necessary for existing plants to equip them for nutrient removal. At a domestic wastewater treatment plant, we performed a pilot test by installing bioplates with entrapped biomass in a conventional aeration basin for CND, and investigated the effects of bioplate packing ratio (PR), hydraulic retention time (HRT), dissolved oxygen (DO) level, on/off aeration mode, and supplemental carbon and alkalinity on nitrogen removal. With the pilot aeration basin of 1.3 m3 loaded with mixed liquor suspended solids of 1,500–2,500 mg/L and bioplates at PR of 3.2% (3.2% basin volume) operated at HRT of 6 h and DO of 4–6 mg/L without supplemental carbon or alkalinity, nitrogen in the wastewater was removed to an effluent total nitrogen (TN) of 7.3 mg/L from an influent TN of 28 mg/L, achieving a specific TN removal of 25 g TN/m2/d. The bioplate, consisting of modular, robust cellulose triacetate structure carrying the biomass, shows promise in retrofitting conventional aeration basins for enhanced nutrient removal.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1701
Author(s):  
Tengxia He ◽  
Deti Xie ◽  
Jiupai Ni ◽  
Zhu Li ◽  
Zhenlun Li

The aim of this study was to investigate the possibility of a simultaneous nitrification–denitrification hypothermic bacterium for applying in Cd(II), Co(II), and Mn(II)-contaminated wastewater. The influence of Cd(II), Co(II), and Mn(II) on the inorganic nitrogen removal capacity of the hypothermia bacterium Arthrobacter arilaitensis Y-10 was determined. The experimental results demonstrated that low concentration of Cd(II) (2.5 mg/L) exhibited no significant impact on bioremediation of ammonium. The nitrate and nitrite removal activities of strain Y-10 were enhanced by 0.1 and 0.25 mg/L of Cd(II), but hindered by more than 0.25 and 0.5 mg/L of Cd(II), respectively. However, the cell growth and denitrification activity ceased immediately once Co(II) was supplemented. In terms of Mn(II), no conspicuous inhibitory impact on ammonium bioremediation was observed even if Mn(II) concentration reached as high as 30 mg/L. The bioremediation of nitrates and nitrites was significantly improved by 0.5 mg/L of Mn(II), and then dropped sharply along with the increase of Mn(II). The order of the degree of inhibitory influence of the three heavy metal ions on the nitrogen bioremediation ability of strain Y-10 was Co(II) > Cd(II) > Mn(II). All the results highlighted that the heterotrophic nitrification was less sensitive to the inhibitory effects of Cd(II), Co(II), and Mn(II) relative to aerobic denitrification.


Sign in / Sign up

Export Citation Format

Share Document