scholarly journals Evaluation of a novel low-carbon to nitrogen- and temperature-tolerant simultaneously nitrifying–denitrifying bacterium and its use in the treatment of river water

RSC Advances ◽  
2018 ◽  
Vol 8 (48) ◽  
pp. 27417-27422 ◽  
Author(s):  
Peng Jin ◽  
Yinyan Chen ◽  
Zhanwang Zheng ◽  
Qizhen Du

A novel simultaneous nitrification and denitrification Klebsiella sp. exhibits high nitrogen removal efficiency under low-temperature and low C/N wastewater.

2019 ◽  
Vol 80 (8) ◽  
pp. 1512-1523
Author(s):  
Weiwei Ma ◽  
Yuxing Han ◽  
Wencheng Ma ◽  
Hongjun Han ◽  
Chunyan Xu ◽  
...  

Abstract A simultaneous nitrification and denitrification (SND) bioaugmention system with Pseudomonas sp. HJ3 inoculated was established to explore the potential of simultaneous phenol and nitrogen removal in coal gasification wastewater (CGW). When the concentration of influent chemical oxygen demand (COD) and total phenols (TPh) was 1,765.94 ± 27.43 mg/L and 289.55 ± 10.32 mg/L, the average removal efficiency of COD and TPh at the stable operating stage reached 64.07% ± 0.76% and 74.91% ± 0.33%, respectively. Meanwhile, the average removal efficiency of NH4+-N and total nitrogen (TN) reached 67.96% ± 0.17% and 57.95% ± 0.12%, respectively. The maximum SND efficiency reached 83.51%. Furthermore, SND bioaugmentation performed with good nitrification tolerance of phenol shock load and significantly reduced toxic inhibition of organisms. Additionally, the microbial community analysis indicated that Pseudomonas sp. HJ3 was the predominant bacterium in the SND bioaugmentation system. Moreover, the indigenous nitrogen removal bacteria such as Thauera, Acidovorax and Stenotrophomonas were enriched, which further enhanced the nitrogen removal in the SND bioaugmentation system. The results demonstrated the promising application of SND bioaugmentation for enhancing simultaneous phenol and nitrogen removal in CGW treatment.


2015 ◽  
Vol 73 (4) ◽  
pp. 827-834 ◽  
Author(s):  
Yang Bai ◽  
Yaobin Zhang ◽  
Xie Quan ◽  
Shuo Chen

An integrated fixed-film activated sludge (IFAS) process (G1) and an activated sludge anoxic–oxic process (G2) were operated at nitrate liquor recirculation ratio (R) of 100, 200 and 300% to investigate the feasibility of enhancing nitrogen removal efficiency (RTN) and reducing R by improving simultaneous nitrification and denitrification (SND) in the IFAS process. The results showed that the effluent NH4+-N and total nitrogen (TN) of G1 at R of 200% were less than 1.5 and 14.5 mg/L, satisfying the Chinese discharge standard (NH4+-N < 5 mg/L; TN < 15 mg/L). However, the effluent NH4+-N and TN of G2 at R of 300% were higher than 8.5 and 15.3 mg/L. It indicated that better RTN could be achieved at a lower R in the IFAS process. The polymerase chain reaction–denaturing gradient gel electrophoresis results implied that nitrifiers and denitrifiers co-existed in one microbial community, facilitating the occurrence of SND in the aerobic reactor of G1, and the contribution of SND to TN removal efficiency ranged 15–19%, which was the main reason that the RTN was improved in the IFAS process. Therefore, the IFAS process was an effective method for improving RTN and reducing R. In practical application, this advantage of the IFAS process can decrease the electricity consumption for nitrate liquor recirculation flow, thereby saving operational costs.


2013 ◽  
Vol 652-654 ◽  
pp. 1633-1636 ◽  
Author(s):  
Xiao Liu ◽  
Mei Yang ◽  
Xian Huai Huang

To study the nitrification and denitrification in compartmented biofilm-electrode reactor (C-BER) under limited oxygen, influence of mild electrolysis on nitrogen removal was investigated under low C/N (mole ratios) with dissolved oxygen about 1mg/ L. It was found that nitrogen removal was mainly through simultaneous nitrification and denitrification (SND). C/N ratio was 1, average total nitrogen (TN) removal efficiencies were 33% and 45% for electric current of 5 and 15mA. C/N was 0.5, electric current was 25mA and effluent was recirculated, TN removal efficiency increased to 60%, within which autotrophic denitrification accounted for about 51%. There was about 50% NH3-N reduced under 15mA when C/N ratio was 1, this increased to 70% for 25mA when C/N ratio was 0.5. Nevertheless, TN reduced between anode and cathodes accounted for 64% in all. The experimental results show that both higher electric current and effluent recirculation are good for SND process under oxygen-limited condition, nitrogen removal can be activated by mild electrolysis.


2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2001 ◽  
Vol 43 (1) ◽  
pp. 269-276 ◽  
Author(s):  
N. Puznava ◽  
M. Payraudeau ◽  
D. Thornberg

The aim of this article is to present a new biological aerated filter (BAF) for nitrogen removal based on simultaneous nitrification and denitrification. Contrary to the systems which integrate both an aerated and a non-aerated zone to allow complete nitrogen removal in one compact or two different units (pre-denitrification and nitrification), this upflow BAF system is based on the principle of simultaneous nitrification and denitrification since the filter is completely aerated. The denitrification process is possible due to the diffusion effect which dominates biofilm processes. The real time aeration control allows us to maintain a low dissolved oxygen value (0.5 to 3 mg O2/l). In this case, the biofilm will not be fully (or less) penetrated with oxygen and denitrification will be carried out in a large part of the biofilm. Therefore, nitrification and denitrification is running simultaneously in different depths of the biofilm. By using 50% less air this BAF gave the same results (less than 20mg TN/l) on pilot plant as a classical nitrification and denitrification BAF (Toettrup et al., 1994). Less recirculation was necessary to achieve the same denitrification.


2003 ◽  
Vol 48 (10) ◽  
pp. 209-216 ◽  
Author(s):  
H. Nakasone ◽  
H. Kuroda ◽  
T. Kato ◽  
T. Tabuchi

Nowadays, it has become very common to find in Japan that nitrate nitrogen concentrations are very high in spring water and in well water where the land use of a watershed is agricultural. We have often observed around 50 mg/L of nitrate nitrogen in the spring water where we live. Crops produced in those fields are mainly vegetables such as celery, cabbage, lettuce, carrots, and so on. Green tea is also popular in Japan. In order to produce good quality green tea, farmers apply a great amount of nitrogen fertilizer. This amount can reach up to 1,000 kg/ha in some areas, although the average application amounts to 628 kg/ha in Japan. As a result, ground water that is rich in nitrate flows into the river, which results in a high nitrogen concentration in river water and ground water. Further, this causes a low pH in river water in some tributary rivers in Japan, though this kind of case is very rare. We knew from field tests that if water contained a high nitrogen concentration and was introduced into paddy fields, high nitrogen removal would be performed. This paper presents the outline and results of a system on how to remove nitrogen using paddy fields (wetlands). Further, this paper presents the evaluated results of the removal quantity at the watershed level.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 431-438 ◽  
Author(s):  
Y. Watanabe ◽  
D. Y. Bang ◽  
K. Itoh ◽  
K. Matsui

This paper concerns simultaneous nitrification and denitrification in a completely mixed bio-reactor with partially and fully submerged rotating biological contactors. The bio-reactor is designed to cause the nitrification and denitrification in partially and fully submerged biofilms, respectively. An experimental investigation was made into the effect of organic material and ratio of influent organic carbon to ammonia nitrogen concentrations(C/N ratio) on the efficiency of simultaneous nitrification and denitrification in the bio-reactor. Settled municipal wastewater and synthetic wastewater containing ammonia nitrogen and organic material such as acetate, ethylene-glycol, phenol and poly-vinyl-alcohol(PVA) were fed into the experimental units. A biofilm dominated by nitrifiers developed on the partially submerged contactors, while a biofilm dominated by heterotrophs developed on the fully submerged contactors. A micro-aerobic environment was formed and biological denitrification occurred in the submerged biofilm. In the municipal wastewater treatment where the influent C/N ratio was around 3.5, the maximum nitrogen removal efficiency was about 60 %. Acetate and ethlene-glycol were effectively used as the organic source of the denitrification. The ability to aerobically degrade PVA was induced by phenol. Once the bacteria inhibiting the biofilm gained the ability to degrade PVA, PVA became an effective organic source of the denitrification.


Sign in / Sign up

Export Citation Format

Share Document