scholarly journals Spatio-temporal analysis of droughts in the Lake Chilwa Basin, Malawi

Author(s):  
Oscar Clement Kambombe ◽  
Cosmo Ngongondo ◽  
Levis Eneya ◽  
Maurice Monjerezi ◽  
Clement Boyce

Abstract Drought phenomena are attributed to water availability deficit that is caused by low precipitation. However, droughts are quite complex and cannot simply be defined on the basis of precipitation as other factors may have an influence. In this study, we investigated the spatio-temporal patterns of droughts in Lake Chilwa Basin, an endorheic lake basin that has recently experienced major recurrent lake recessions. The standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) at six- and twelve-month timescales were used to evaluate drought severity variations from 1970 to 2018, in relation to the recessions. The stationarity difference in rainfall between 1973 to 1995 and 1996 to 2018 and climatological trends were tested using Mann-Whitney and Mann-Kendall tests, respectively. The El Niño Southern Oscilation (ENSO) influence on rainfall was also investigated. In general, the results show a statistically insignificant decreasing rainfall trend, coupled with statistically significant temperature increase (a=0.05). In addition, both indices broadly detected droughts within similar category ranges and variation patterns, suggesting minimal influence of temperature on droughts compared to rainfall. The study also reveals that not every ENSO event leads to low rainfall in the basin. It is further shown that unlike past major recessions e.g., 1994/95, recent lake dry-ups of 2012 and 2015 were as a result of milder droughts. Moreover, the trigger threshold of lake dry-ups is shown to have shifted; such that average annual rainfall below 1000mm is likely to yield a dry-up in recent times than before, which may be attributable to anthropogenic pressure.

2016 ◽  
Vol 42 (1) ◽  
pp. 185 ◽  
Author(s):  
L. Serrano-Barrios ◽  
S. M. Vicente-Serrano ◽  
H. Flores-Magdaleno ◽  
L. Tijerina-Chávez ◽  
D. Vázquez-Soto

This article analyses the spatio-temporal variability of droughts in the North Pacific Basin of México between 1961 and 2010, using two drought indices: the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). We used data from 48 weather stations with available data of precipitation and monthly minimum and maximum temperature. In 22 of the weather stations, time series of Piché evaporation were also available. The reference evapotranspiration, necessary to obtain the SPEI, was calculated by means of the Hargreaves equation. Results show that major droughts occurred in the 1980s and 2000s, although there is a noticeable spatial variability across the region. Finally, the potential impact of the atmospheric evaporative demand on drought severity observed by the different drought indices is discussed, and the possible implications for an appropriate risk assessment.


2020 ◽  
Vol 11 (S1) ◽  
pp. 68-84 ◽  
Author(s):  
Soumia Mellak ◽  
Doudja Souag-Gamane

Abstract Drought mitigation and prevention require a broader knowledge of the spatio-temporal characteristics and return periods of droughts over several years. In this research, drought characteristics (severity, duration, frequency and areal extent) have been analysed in northern Algeria by using the Standardized Precipitation Index to identify drought events from 194 precipitation stations. For frequency analysis, three Archimedean copula families were used to find a relationship between drought duration and severity. The severity–duration–frequency (SDF) and the severity–area–frequency (SAF) curves were obtained. The SDF and SAF curves are then used to build three-dimensional surfaces of drought severity, drought duration and cumulated percentage of the affected area (SDA) for each return period. It has been shown that the return periods of maximum drought events severity vary according to their durations. To address the issue of long-term droughts, a new classification of dry events based on drought severities is proposed. The obtained results show that the western part of Algeria is the most sensitive to severe/extreme droughts of short durations and high probabilities of exceedance. For long-term durations, the study area was sensitive to mild droughts with lower probabilities.


2021 ◽  
Vol 144 (3-4) ◽  
pp. 1219-1231
Author(s):  
Oscar Kambombe ◽  
Cosmo Ngongondo ◽  
Levis Eneya ◽  
Maurice Monjerezi ◽  
Clement Boyce

2009 ◽  
Vol 48 (6) ◽  
pp. 1217-1229 ◽  
Author(s):  
Steven M. Quiring

Abstract Drought is a complex phenomenon that is difficult to accurately describe because its definition is both spatially variant and context dependent. Decision makers in local, state, and federal agencies commonly use operational drought definitions that are based on specific drought index thresholds to trigger water conservation measures and determine levels of drought assistance. Unfortunately, many state drought plans utilize operational drought definitions that are derived subjectively and therefore may not be appropriate for triggering drought responses. This paper presents an objective methodology for establishing operational drought definitions. The advantages of this methodology are demonstrated by calculating meteorological drought thresholds for the Palmer drought severity index, the standardized precipitation index, and percent of normal precipitation using both station and climate division data from Texas. Results indicate that using subjectively derived operational drought definitions may lead to over- or underestimating true drought severity. Therefore, it is more appropriate to use an objective location-specific method for defining operational drought thresholds.


Data ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 109
Author(s):  
Matthew P. Lucas ◽  
Clay Trauernicht ◽  
Abby G. Frazier ◽  
Tomoaki Miura

Spatially explicit, wall-to-wall rainfall data provide foundational climatic information but alone are inadequate for characterizing meteorological, hydrological, agricultural, or ecological drought. The Standardized Precipitation Index (SPI) is one of the most widely used indicators of drought and defines localized conditions of both drought and excess rainfall based on period-specific (e.g., 1-month, 6-month, 12-month) accumulated precipitation relative to multi-year averages. A 93-year (1920–2012), high-resolution (250 m) gridded dataset of monthly rainfall available for the State of Hawai‘i was used to derive gridded, monthly SPI values for 1-, 3-, 6-, 9-, 12-, 24-, 36-, 48-, and 60-month intervals. Gridded SPI data were validated against independent, station-based calculations of SPI provided by the National Weather Service. The gridded SPI product was also compared with the U.S. Drought Monitor during the overlapping period. This SPI product provides several advantages over currently available drought indices for Hawai‘i in that it has statewide coverage over a long historical period at high spatial resolution to capture fine-scale climatic gradients and monitor changes in local drought severity.


2020 ◽  
Vol 11 (S1) ◽  
pp. 115-132 ◽  
Author(s):  
M. A. Jincy Rose ◽  
N. R. Chithra

Abstract Temperature is an indispensable parameter of climate that triggers evapotranspiration and has vital importance in aggravating drought severity. This paper analyses the existence and persistence of drought conditions which are said to prevail in a tropical river basin which was once perennial. Past observed data and future climate projections of precipitation and temperature were used for this purpose. The assessment and projection of this study employ the Standardized Precipitation Evapotranspiration Index (SPEI) compared with that of the Standardized Precipitation Index (SPI). The results indicate the existence of drought in the past and the drought conditions that may persist in the future according to RCP 4.5 and 8.5 scenarios. The past drought years identified in the study were compared with the drought declared years in the state and were found to be matching. The evaluation of the future scenarios unveils the occurrence of drought in the basin ranging from mild to extreme conditions. It has been noted that the number of moderate and severe drought months has increased based on SPEI compared to SPI, indicating the importance of temperature in drought studies. The study can be considered as a plausible scientific remark helpful in risk management and application decisions.


2008 ◽  
Vol 9 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Eleanor J. Burke ◽  
Simon J. Brown

Abstract The uncertainty in the projection of future drought occurrence was explored for four different drought indices using two model ensembles. The first ensemble expresses uncertainty in the parameter space of the third Hadley Centre climate model, and the second is a multimodel ensemble that additionally expresses structural uncertainty in the climate modeling process. The standardized precipitation index (SPI), the precipitation and potential evaporation anomaly (PPEA), the Palmer drought severity index (PDSI), and the soil moisture anomaly (SMA) were derived for both a single CO2 (1×CO2) and a double CO2 (2×CO2) climate. The change in moderate drought, defined by the 20th percentile of the relevant 1×CO2 distribution, was calculated. SPI, based solely on precipitation, shows little change in the proportion of the land surface in drought. All the other indices, which include a measure of the atmospheric demand for moisture, show a significant increase with an additional 5%–45% of the land surface in drought. There are large uncertainties in regional changes in drought. Regions where the precipitation decreases show a reproducible increase in drought across ensemble members and indices. In other regions the sign and magnitude of the change in drought is dependent on index definition and ensemble member, suggesting that the selection of appropriate drought indices is important for impact studies.


Sign in / Sign up

Export Citation Format

Share Document