scholarly journals Deep Ensemble Learning Method to Forecast COVID-19 Outbreak

Author(s):  
Nesrine Ben Yahia ◽  
Mohamed Dhiaeddine Kandara ◽  
Narjes Bellamine Ben Saoud

Abstract Due to the continuous spread of the novel coronavirus (COVID-19) worldwide, it is urgent to develop accurate decision-aided methods to support healthcare policymakers to control and early detect COVID-19 outbreak especially in the data science era. In this context, our main goal is to build a generic and accurate method that can predict daily conrmed cases which helps stake-holders to make and review their epidemic response plans. This method takes advantage of the complementarity of DNN (Deep Neuronal Networks), LSTM (Long Short Term Memory) and CNN (Convolutional Neuronal Networks) where their forecasted values represent the inputs of stacked ensemble meta-learners that will generate the nal outbreak predictions. To the best of our knowledge, this is the rst time that deep ensemble learning is used to deal with this issue. The proposed method is validated on three experimental scenarios, Tunisia case study, China case study and the third one is based on China data and models to predict Tunisia COVID-19 outbreak. Experiment results indicate that, compared with individual learners, the stacked-DNN meta-learner, whose input are forecasted values of DNN, LSTM and CNN, achieved the best accurate results in terms of accuracy as well as RMSE for the three scenarios. In conclusion, our ndings demonstrate that i) deep ensemble learning may be used as an accurate decision support tool for improving COVID-19 outbreak forecasting, ii) it is possible to reuse China learners and meat-learners to make prediction of the epidemic trend for other countries when preventive and control measures are comparable.

2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Patrizia Serra ◽  
Gianfranco Fancello

Abstract Performance assessment is a fundamental tool to successfully monitor and manage logistics and transport systems. In the field of Short Sea Shipping (SSS), the performance of the various maritime initiatives should be analyzed to assess the best way to achieve efficiency and guide related policies. This study proposes a quantitative methodology which can serve as a decision-support tool in the preliminary assessment and comparison of alternative SSS networks. The research is executed via a Mediterranean case study that compares a hypothetical Mediterranean ro-ro SSS network developed in the framework of a past Euro-Mediterranean cooperation project with the network of existing ro-ro liner services operating in the area. Performance benchmarking of the two networks is performed using a set of quantitative Key Performance Indicators (KPIs) and applying a factor-cluster analysis to produce homogeneous clusters of services based on the relevant variables while accounting for sample heterogeneity. Quantitative results mostly confirm the overall better performance of the prospective network and demonstrate that using KPIs and factor-cluster analysis to investigate the performance of maritime networks can provide policymakers with a preliminary wealth of knowledge that can help in setting targeted policy for SSS-oriented initiatives.


Author(s):  
Alessandro Tufano ◽  
Riccardo Accorsi ◽  
Andrea Gallo ◽  
Riccardo Manzini

"Contract catering industry is concerned with the production of ready-to-eat meals for schools, hospitals and private companies. The structure of this market is highly competitive, and customers are rarely willing to pay a high price for this catering service. A single production sites may be demanded up to 10.000 meals per day and these operations can hardly be managed via rule of thumbs without any quantitative decision support tool. This situation is common at several stages of a food supply chain and the methodologies presented in this paper are addressed to any food batch production system with similar complexity and trade-offs. This paper proposes an original KPI dashboard, designed to control costs, time and quality efficiency and helping managers to identify criticalities. Special emphasis is given on food safety control which is the management’s main concern and must be carefully monitored in each stage of the production. To calculate the value of KPIs a Montecarlo simulation approach is used to deal with production complexity and uncertainty. A case study showcases the potential of simulation in this complex industrial field. The case study illustrates an application of the methodology on an Italian company suffering local recipe contamination. The company aims at defining the best standard for production, identifying cycles being sustainable from an economic and environmental point of view."


2021 ◽  
Author(s):  
Apostolos Arsenopoulos ◽  
Elissaios Sarmas ◽  
Andriana Stavrakaki ◽  
Ioanna Giannouli ◽  
John Psarras

Author(s):  
Clony Junior ◽  
Pedro Gusmão ◽  
José Moreira ◽  
Ana Maria M. Tome

Data science highlights fields of study and research such as time series, which, although widely explored in the past, gain new perspectives in the context of this discipline. This chapter presents two approaches to time series forecasting, long short-term memory (LSTM), a special kind of recurrent neural network (RNN), and Prophet, an open-source library developed by Facebook for time series forecasting. With a focus on developing forecasting processes by data mining or machine learning experts, LSTM uses gating mechanisms to deal with long-term dependencies, reducing the short-term memory effect inherent to the traditional RNN. On the other hand, Prophet encapsulates statistical and computational complexity to allow broad use of time series forecasting, prioritizing the expert's business knowledge through exploration and experimentation. Both approaches were applied to a retail time series. This case study comprises daily and half-hourly forecasts, and the performance of both methods was measured using the standard metrics.


Sign in / Sign up

Export Citation Format

Share Document