scholarly journals Intelligent and Resizable Control Plane for Software Defined Vehicular Network : A Deep Reinforcement Learning Approach

Author(s):  
karima Smida ◽  
Hajer Tounsi ◽  
Mounir Frikha

Abstract Software-Defined Networking (SDN) has become one of the most promising paradigms to manage large scale networks. Distributing the SDN Control proved its performance in terms of resiliency and scalability. However, the choice of the number of controllers to use remains problematic. A large number of controllers may be oversized inducing an overhead in the investment cost and the synchronization cost in terms of delay and traffic load. However, a small number of controllers may be insufficient to achieve the objective of the distributed approach. So, the number of used controllers should be tuned in function of the traffic charge and application requirements. In this paper, we present an Intelligent and Resizable Control Plane for Software Defined Vehicular Network architecture (IRCP-SDVN), where SDN capabilities coupled with Deep Reinforcement Learning (DRL) allow achieving better QoS for Vehicular Applications. Interacting with SDVN, DRL agent decides the optimal number of distributed controllers to deploy according to the network environment (number of vehicles, load, speed etc.). To the best of our knowledge, this is the first work that adjusts the number of controllers by learning from the vehicular environment dynamicity. Experimental results proved that our proposed system outperforms static distributed SDVN architecture in terms of end-to-end delay and packet loss.

2020 ◽  
Vol 12 (9) ◽  
pp. 147 ◽  
Author(s):  
Babangida Isyaku ◽  
Mohd Soperi Mohd Zahid ◽  
Maznah Bte Kamat ◽  
Kamalrulnizam Abu Bakar ◽  
Fuad A. Ghaleb

Software defined networking (SDN) is an emerging network paradigm that decouples the control plane from the data plane. The data plane is composed of forwarding elements called switches and the control plane is composed of controllers. SDN is gaining popularity from industry and academics due to its advantages such as centralized, flexible, and programmable network management. The increasing number of traffics due to the proliferation of the Internet of Thing (IoT) devices may result in two problems: (1) increased processing load of the controller, and (2) insufficient space in the switches’ flow table to accommodate the flow entries. These problems may cause undesired network behavior and unstable network performance, especially in large-scale networks. Many solutions have been proposed to improve the management of the flow table, reducing controller processing load, and mitigating security threats and vulnerabilities on the controllers and switches. This paper provides comprehensive surveys of existing schemes to ensure SDN meets the quality of service (QoS) demands of various applications and cloud services. Finally, potential future research directions are identified and discussed such as management of flow table using machine learning.


Author(s):  
Mohammadreza Armandpour ◽  
Patrick Ding ◽  
Jianhua Huang ◽  
Xia Hu

Many recent network embedding algorithms use negative sampling (NS) to approximate a variant of the computationally expensive Skip-Gram neural network architecture (SGA) objective. In this paper, we provide theoretical arguments that reveal how NS can fail to properly estimate the SGA objective, and why it is not a suitable candidate for the network embedding problem as a distinct objective. We show NS can learn undesirable embeddings, as the result of the “Popular Neighbor Problem.” We use the theory to develop a new method “R-NS” that alleviates the problems of NS by using a more intelligent negative sampling scheme and careful penalization of the embeddings. R-NS is scalable to large-scale networks, and we empirically demonstrate the superiority of R-NS over NS for multi-label classification on a variety of real-world networks including social networks and language networks.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Yinyin Yuan ◽  
Chang-Tsun Li

SummaryWe present a Bayes-Random Fields framework which is capable of integrating unlimited data sources for discovering relevant network architecture of large-scale networks. The random field potential function is designed to impose a cluster constraint, teamed with a full Bayesian approach for incorporating heterogenous data sets. The probabilistic nature of our framework facilitates robust analysis in order to minimize the influence of noise inherent in the data on the inferred structure in a seamless and coherent manner. This is later proved in its applications to both large-scale synthetic data sets and Saccharomyces Cerevisiae data sets. The analytical and experimental results reveal the varied characteristic of different types of data and reflect their discriminative ability in terms of identifying direct gene interactions.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2021 ◽  
Vol 13 (9) ◽  
pp. 5108
Author(s):  
Navin Ranjan ◽  
Sovit Bhandari ◽  
Pervez Khan ◽  
Youn-Sik Hong ◽  
Hoon Kim

The transportation system, especially the road network, is the backbone of any modern economy. However, with rapid urbanization, the congestion level has surged drastically, causing a direct effect on the quality of urban life, the environment, and the economy. In this paper, we propose (i) an inexpensive and efficient Traffic Congestion Pattern Analysis algorithm based on Image Processing, which identifies the group of roads in a network that suffers from reoccurring congestion; (ii) deep neural network architecture, formed from Convolutional Autoencoder, which learns both spatial and temporal relationships from the sequence of image data to predict the city-wide grid congestion index. Our experiment shows that both algorithms are efficient because the pattern analysis is based on the basic operations of arithmetic, whereas the prediction algorithm outperforms two other deep neural networks (Convolutional Recurrent Autoencoder and ConvLSTM) in terms of large-scale traffic network prediction performance. A case study was conducted on the dataset from Seoul city.


2021 ◽  
Author(s):  
Miguel Dasilva ◽  
Christian Brandt ◽  
Marc Alwin Gieselmann ◽  
Claudia Distler ◽  
Alexander Thiele

Abstract Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.


Sign in / Sign up

Export Citation Format

Share Document