Multi-walled Carbon Nanotubes/Manganese Dioxide Nano- flowers-like/Polyaniline Nanowires Nanocomposite Modified Electrode: A New Platform for a Highly Sensitive Electrochemical Impedance DNA Sensor

Author(s):  
Tuan Chu ◽  
Luyen Thi Tran ◽  
Hoang Vinh Tran ◽  
Trung Tran ◽  
Nghia Trong Nguyen ◽  
...  

Abstract We describe in this report a development of label-free electrochemical DNA sensor based on a novel nanostructured electrode of multi-walled carbon nanotubes (MWCNTs)/ nano-flowers-like manganese dioxide (MnO2)/polyaniline nanowires (PANi NWs) nanocomposite. The nanocomposite was synthesized in-situ onto an interdigitated platinum microelectrode (Pt) using a combination of chemical and electrochemical synthesis methods: chemical preparation of MWCNTs/MnO2 and electropolymerization of PANi NWs. The fabricated MWCNTs/MnO2/PANi NWs was then used to develop a label-free electrochemical DNA sensor for a specific gene of Escherichia coli (E.coli) O157:H7 detection. The MWCNTs/MnO2/PANi NWs modified Pt electrode’s surface can facilitate for probe DNA strands immobilization and, therefore the electrochemical signal of the DNA sensors has been improved. The electrochemical impedance spectroscopy (EIS) measurements were conducted to investigate the output signals generated by the specific binding of probe and target DNA sequences. Obtained results indicated that the developed electrochemical biosensor can detect the target DNA in the linear range of 5 pM to 500 nM with a low limit of detection (LOD) at 4.42 × 10 –13 M. The research results demonstrated that the MWCNTs/MnO2/PANi NWs nanocomposite-based electrochemical DNA sensor has a great potential application to the development of highly sensitive and selective electrochemical DNA sensors to detect pathogenic agents.

2014 ◽  
Vol 38 (12) ◽  
pp. 5918-5924 ◽  
Author(s):  
Linxia Fang ◽  
Kejing Huang ◽  
Baoling Zhang ◽  
Yujie Liu ◽  
Qiuyu Zhang

A highly sensitive electrochemical DNA sensor was constructed by homogenously distributing Au nanoparticles (AuNPs) on a flower-like 3D ZnO superstructure–chitosan (CS) matrix.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1038
Author(s):  
Paola Sanjuan-Alberte ◽  
Jayasheelan Vaithilingam ◽  
Jonathan C. Moore ◽  
Ricky D. Wildman ◽  
Christopher J. Tuck ◽  
...  

Conductive hydrogel-based materials are attracting considerable interest for bioelectronic applications due to their ability to act as more compatible soft interfaces between biological and electrical systems. Despite significant advances that are being achieved in the manufacture of hydrogels, precise control over the topographies and architectures remains challenging. In this work, we present for the first time a strategy to manufacture structures with resolutions in the micro-/nanoscale based on hydrogels with enhanced electrical properties. Gelatine methacrylate (GelMa)-based inks were formulated for two-photon polymerisation (2PP). The electrical properties of this material were improved, compared to pristine GelMa, by dispersion of multi-walled carbon nanotubes (MWCNTs) acting as conductive nanofillers, which was confirmed by electrochemical impedance spectroscopy and cyclic voltammetry. This material was also confirmed to support human induced pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) viability and growth. Ultra-thin film structures of 10 µm thickness and scaffolds were manufactured by 2PP, demonstrating the potential of this method in areas spanning tissue engineering and bioelectronics. Though further developments in the instrumentation are required to manufacture more complex structures, this work presents an innovative approach to the manufacture of conductive hydrogels in extremely low resolution.


2020 ◽  
Vol 167 (8) ◽  
pp. 087508 ◽  
Author(s):  
Luyen Thi Tran ◽  
Hoang Vinh Tran ◽  
Hue Thi Minh Dang ◽  
Chinh Dang Huynh ◽  
Tuan Anh Mai

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3489 ◽  
Author(s):  
Yurii Kuzin ◽  
Dominika Kappo ◽  
Anna Porfireva ◽  
Dmitry Shurpik ◽  
Ivan Stoikov ◽  
...  

Voltammetric DNA sensor has been proposed on the platform of glassy carbon electrode covered with carbon black with adsorbed pillar[5]arene molecules. Electropolymerization of Neutral Red performed in the presence of native or oxidatively damaged DNA resulted in formation of hybrid material which activity depended on the DNA conditions. The assembling of the surface layer was confirmed by scanning electron microscopy and electrochemical impedance spectroscopy. The influence of DNA and pillar[5]arene on redox activity of polymeric dye was investigated and a significant increase of the peak currents was found for DNA damaged by reactive oxygen species generated by Cu2+/H2O2 mixture. Pillar[5]arene improves the electron exchange conditions and increases the response and its reproducibility. The applicability of the DNA sensor developed was shown on the example of ascorbic acid as antioxidant. It decreases the current in the concentration range from 1.0 μM to 1.0 mM. The possibility to detect antioxidant activity was qualitatively confirmed by testing tera infusion. The DNA sensor developed can find application in testing of carcinogenic species and searching for new antitumor drugs.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document