scholarly journals Candidate Genes and Stable QTL for Grain Yield and Seed Size in Durum Wheat

2021 ◽  
Author(s):  
Giacomo Mangini ◽  
Antonio Blanco ◽  
Domenica Nigro ◽  
Massimo Antonio Signorile ◽  
Rosanna Simeone

Abstract Background: In wheat grain yield is expressed as the product of different components. Among these, thousand kernels weight (TKW) reflects the combination of several grain related traits including grain length (GL), grain width (GW) and area. Grain weight is also affected by phenological traits, such as heading time (HT) and plant height (PH). To detect stable QTL and candidate genes involved in phenotypic control of grain yield, a recombinant inbred line (RIL) population derived from two elite durum wheat cultivars (Liberdur and Anco Marzio) was evaluated for yield components and grain related traits for three growing seasons in southern Italy. The mapping population was genotyped with a 90K SNP array and a high-density genetic linkage map with 5134 markers was obtained.Results: A total of 30 QTL were detected on the durum RIL population including 9 stable QTL for TKW (2 QTL), GL, GW (2 QTL), AREA, HT and PH (2 QTL) distributed on 1B, 2A, 3A and 6B chromosomes. Interestingly, a QTL cluster mapped on 2A included a major QTL for HT explaining at least 70% of phenotypic variance and co-located with a QTL for YLD, TKW, GL and GW and AREA, respectively. In the physical position of this QTL cluster a photoperiod sensitivity gene (Ppd-A1) was found. Serine carboxypeptidase, Big Grain 1 and β-fructofuranosidase candidate genes were mapped in clusters containing stable QTL. Candidate genes involved in auxin metabolism were also found in QTL clusters in which a QTL for AREA was declared. Conclusions: This study showed that yield components and phenological traits had higher inheritances than grain yield, allowing an accurate stable QTL cluster detection. This was a powerful requisite to physically map QTL on the reference durum wheat genome and to identify candidate genes strongly affecting the genetic grain yield network.

2020 ◽  
Author(s):  
Giacomo Mangini ◽  
Antonio Blanco ◽  
Domenica Nigro ◽  
Massimo Antonio Signorile ◽  
Rosanna Simeone

Abstract Background: In wheat grain yield is expressed as the product of different components. Among these, thousand kernels weight (TKW) reflects the combination of several grain related traits including grain length (GL), grain width (GW) and area. Grain weight is also affected by phenological traits, such as heading time (HT) and plant height (PH). To detect stable QTL and candidate genes involved in phenotypic control of grain yield, a recombinant inbred line (RIL) population derived from two elite durum wheat cultivars (Liberdur and Anco Marzio) was evaluated for yield components and grain related traits for three growing seasons in southern Italy. The mapping population was genotyped with a 90K SNP array and a high-density genetic linkage map with 5134 markers was obtained.Results: A total of 30 QTL were detected on the durum RIL population including 9 stable QTL for TKW (2 QTL), GL, GW (2 QTL), AREA, HT and PH (2 QTL) distributed on 1B, 2A, 3A and 6B chromosomes. Interestingly, a QTL cluster mapped on 2A included a major QTL for HT explaining at least 70% of phenotypic variance and co-located with a QTL for YLD, TKW, GL and GW and AREA, respectively. In the physical position of this QTL cluster a photoperiod sensitivity gene (Ppd-A1) was found. Serine carboxypeptidase, Big Grain 1 and β-fructofuranosidase candidate genes were mapped in clusters containing stable QTL. Candidate genes involved in auxin metabolism were also found in QTL clusters in which a QTL for AREA was declared.Conclusions: This study showed that yield components and phenological traits had higher inheritances than grain yield, allowing an accurate stable QTL cluster detection. This was a powerful requisite to physically map QTL on the reference durum wheat genome and to identify candidate genes strongly affecting the genetic grain yield network.


2020 ◽  
Author(s):  
Giacomo Mangini ◽  
Antonio Blanco ◽  
Domenica Nigro ◽  
Massimo Antonio Signorile ◽  
Rosanna Simeone

Abstract Background: In wheat grain yield is expressed as the product of different components. Among these, thousand kernels weight (TKW) reflects the combination of several grain related traits including grain length (GL), grain width (GW) and area. Grain weight is also affected by phenological traits, such as heading time (HT) and plant height (PH). To detect stable QTL and candidate genes involved in phenotypic control of grain yield, a recombinant inbred line (RIL) population derived from two elite durum wheat cultivars (Liberdur and Anco Marzio) was evaluated for yield components and grain related traits for three growing seasons in southern Italy. The mapping population was genotyped with a 90K SNP array and a high-density genetic linkage map with 5134 markers were obtained.Results: A total of 30 QTL were detected on the durum RIL population including 9 stable QTL for TKW (2 QTL), GL, GW (2 QTL), AREA, HT and PH (2 QTL) distributed on 1B, 2A, 3A and 6B chromosomes. Interestingly, a QTL cluster mapped on 2A included a major QTL for HT explaining at least 70% of phenotypic variance and co-located with a QTL for YLD, TKW, GL and GW and AREA, respectively. In the physical position of this QTL cluster a photoperiod sensitivity gene (Ppd-A1) was found. Serine carboxypeptidase, Big Grain 1 and β-fructofuranosidase candidate genes were mapped in clusters containing stable QTL. Candidate genes involved in auxin metabolism were also found in QTL clusters in which a QTL for AREA was declared. Conclusions: This study showed that yield components and phenological traits had higher inheritances than grain yield, allowing an accurate stable QTL cluster detection. This was a powerful requisite to physically map QTL on the reference durum wheat genome and to identify candidate genes strongly affecting the genetic grain yield network.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 312
Author(s):  
Giacomo Mangini ◽  
Antonio Blanco ◽  
Domenica Nigro ◽  
Massimo Antonio Signorile ◽  
Rosanna Simeone

Grain yield (YLD) is affected by thousand kernel weight (TKW) which reflects the combination of grain length (GL), grain width (GW) and grain area (AREA). Grain weight is also influenced by heading time (HT) and plant height (PH). To detect candidate genes and quantitative trait loci (QTL) of yield components, a durum wheat recombinant inbred line (RIL) population was evaluated in three field trials. The RIL was genotyped with a 90K single nucleotide polymorphism (SNP) array and a high-density genetic linkage map with 5134 markers was obtained. A total of 30 QTL were detected including 23 QTL grouped in clusters on 1B, 2A, 3A, 4B and 6B chromosomes. A QTL cluster on 2A chromosome included a major QTL for HT co-located with QTL for YLD, TKW, GL, GW and AREA, respectively. The photoperiod sensitivity (Ppd-A1) gene was found in the physical position of this cluster. Serine carboxypeptidase, Big grain 1 and β-fructofuranosidase candidate genes were mapped in clusters containing QTL for seed size. This study showed that yield components and phenological traits had higher inheritances than grain yield, allowing an accurate QTL cluster detection. This was a requisite to physically map QTL on durum genome and to identify candidate genes affecting grain yield.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


2013 ◽  
Vol 64 (10) ◽  
pp. 957 ◽  
Author(s):  
S. Dura ◽  
M. Duwayri ◽  
M. Nachit ◽  
F. Al Sheyab

Durum wheat is one of the most important staple food crops, grown mainly in the Mediterranean region where its productivity is drastically affected by salinity. The objective of this study was to identify markers associated with grain yield and its related traits under saline conditions. A population of 114 F8 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between Belikh2 (salinity-tolerant variety) and Omrabi5 (less salinity tolerant) was grown under non-saline and saline conditions in a glasshouse. Phenotypic data of the RILs and parental lines were measured for 15 agronomic traits. Association of 96 simple sequence repeat (SSR) loci covering all 14 chromosomes with 15 agronomic traits was analysed with a mixed linear model. In total, 49 SSR loci were significantly associated with these traits. Under saline conditions, 12 markers were associated with phenological traits and 19 markers were associated with yield and yield components. Marker alleles from Belikh2 were associated with a positive effect for the majority of markers associated with yield and yield components. Under saline condition, five markers (Xwmc182, Xwmc388, Xwmc398, Xbarc61, and Xwmc177) were closely linked with grain yield, located on chromosomes 2A, 3A, 3B, 4B, 5A, 6B, and 7A. These markers could be used for marker-assisted selection in durum wheat breeding under saline conditions.


2004 ◽  
Vol 44 (1) ◽  
pp. 37
Author(s):  
M. K. J. El-Shatnawi ◽  
N. I. Haddad

Greenhouse pot trials and field experiments were carried out under rain-fed condition in north-eastern Jordan during 1997–98 and 1998–99 growing seasons, to test 3 barley genotypes for their suitability for both forage and grain production. The varieties Rehani and ACSAD176 produced higher forage yields than Rum. In the field, clipping reduced subsequent grain yield per plant by about 18%, lowering grain weight of the main spike from 2.3�g in the control to 1.8 g in the clipped plants. Clipping increased tiller density of barley plants in the field. Decreases in grain yield following clipping could also be attributed to reductions in the number of grains per spike. Clipping decreased the number of grains per spike by about 9% by reducing the number of spikelets per spike. Cutting reduced 1000-grain weight by about 9%. Clipping induced changes in the relative importance of yield components influencing subsequent grain yield. The yield components reduced by clipping were the most important contributors to loss of grain yield.


2011 ◽  
Vol 57 (No. 9) ◽  
pp. 435-440 ◽  
Author(s):  
S. Pospisil A Pospisil M Svecnjak Z Matotan

  Investigations were carried out at the experimental field of the Faculty of Agriculture in Zagreb in the growing seasons 2008/2009 and 2009/2010 with the aim to determine the influence of seeding rate and fungicide treatment upon the yield and yield components of spelt (Triticum spelta L.). The trial included two spelt cultivars: Nirvana and Ostro, three seeding rates: 200, 300, and 400 germinated seeds/m2, and a fungicide treatment (tebuconazole). Cultivar Nirvana produced a significantly higher grain yield in both trial years, higher number of spikelets per spike, higher grain number and mass per spike. Cultivar Ostro had a significantly higher grain crude proteins content, higher 1000 grain weight, and also a higher number of sterile spikelets per spike. No significant effect of seeding rate on grain yield was determined while the fungicide treatment had a significant effect on grain yield only in the warmer year 2008/2009.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ning Gao ◽  
Yilong Chen ◽  
Xiaohong Liu ◽  
Yunxiang Zhao ◽  
Lin Zhu ◽  
...  

Abstract Background In the pig production industry, artificial insemination (AI) plays an important role in enlarging the beneficial impact of elite boars. Understanding the genetic architecture and detecting genetic markers associated with semen traits can help in improving genetic selection for such traits and accelerate genetic progress. In this study, we utilized a weighted single-step genome-wide association study (wssGWAS) procedure to detect genetic regions and further candidate genes associated with semen traits in a Duroc boar population. Overall, the full pedigree consists of 5284 pigs (12 generations), of which 2693 boars have semen data (143,113 ejaculations) and 1733 pigs were genotyped with 50 K single nucleotide polymorphism (SNP) array. Results Results show that the most significant genetic regions (0.4 Mb windows) explained approximately 2%~ 6% of the total genetic variances for the studied traits. Totally, the identified significant windows (windows explaining more than 1% of total genetic variances) explained 28.29, 35.31, 41.98, and 20.60% of genetic variances (not phenotypic variance) for number of sperm cells, sperm motility, sperm progressive motility, and total morphological abnormalities, respectively. Several genes that have been previously reported to be associated with mammal spermiogenesis, testes functioning, and male fertility were detected and treated as candidate genes for the traits of interest: Number of sperm cells, TDRD5, QSOX1, BLK, TIMP3, THRA, CSF3, and ZPBP1; Sperm motility, PPP2R2B, NEK2, NDRG, ADAM7, SKP2, and RNASET2; Sperm progressive motility, SH2B1, BLK, LAMB1, VPS4A, SPAG9, LCN2, and DNM1; Total morphological abnormalities, GHR, SELENOP, SLC16A5, SLC9A3R1, and DNAI2. Conclusions In conclusion, candidate genes associated with Duroc boars’ semen traits, including the number of sperm cells, sperm motility, sperm progressive motility, and total morphological abnormalities, were identified using wssGWAS. KEGG and GO enrichment analysis indicate that the identified candidate genes were enriched in biological processes and functional terms may be involved into spermiogenesis, testes functioning, and male fertility.


1983 ◽  
Vol 101 (2) ◽  
pp. 383-387 ◽  
Author(s):  
A. Hadjichristodoulou

SUMMARYA series of trials were conducted during 1979–82 under semi-arid conditions in a Mediterranean-type environment to study the edge effects in mechanized durum wheat and barley variety trials when uncropped pathways are left between plots. Varietal differences in edge effects on grain yield were in most trials not significant. Thus, edge effects do not distort significantly the relative ranking of varieties.Edge effects were significant for all traits studied and higher in grain and straw yields. These effects were also higher in drier seasons. The overestimation of grain yield from whole plots was 13–18% in relatively high rainfall seasons and 29% in a dry season. In two seasons the scores on the two outer rows were higher than on the two central rows by 89 and 117 % for grain yield, by 72 and 73% for straw yield, by 44 and 48% for numbers of tillers, by 6% for 1000-grain weight and by 14 and 40% for number of grains per tiller. The edge effect was not confined to the outer rows, but it extended to the inner rows of the plot; the magnitude of this effect varied with season and trait.Rows adjacent to the pathway and unprotected from wind had a lower value for all traits than the opposite rows of the pathway, which were protected by the inner rows.


Sign in / Sign up

Export Citation Format

Share Document