Detection of molecular markers associated with yield and yield components in durum wheat (Triticum turgidum L. var. durum) under saline conditions

2013 ◽  
Vol 64 (10) ◽  
pp. 957 ◽  
Author(s):  
S. Dura ◽  
M. Duwayri ◽  
M. Nachit ◽  
F. Al Sheyab

Durum wheat is one of the most important staple food crops, grown mainly in the Mediterranean region where its productivity is drastically affected by salinity. The objective of this study was to identify markers associated with grain yield and its related traits under saline conditions. A population of 114 F8 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between Belikh2 (salinity-tolerant variety) and Omrabi5 (less salinity tolerant) was grown under non-saline and saline conditions in a glasshouse. Phenotypic data of the RILs and parental lines were measured for 15 agronomic traits. Association of 96 simple sequence repeat (SSR) loci covering all 14 chromosomes with 15 agronomic traits was analysed with a mixed linear model. In total, 49 SSR loci were significantly associated with these traits. Under saline conditions, 12 markers were associated with phenological traits and 19 markers were associated with yield and yield components. Marker alleles from Belikh2 were associated with a positive effect for the majority of markers associated with yield and yield components. Under saline condition, five markers (Xwmc182, Xwmc388, Xwmc398, Xbarc61, and Xwmc177) were closely linked with grain yield, located on chromosomes 2A, 3A, 3B, 4B, 5A, 6B, and 7A. These markers could be used for marker-assisted selection in durum wheat breeding under saline conditions.

2020 ◽  
Author(s):  
Yan Yang ◽  
Smit Dhakal ◽  
Chenggen Chu ◽  
Shichen Wang ◽  
Qingwu Xue ◽  
...  

AbstractTwo drought-tolerant wheat cultivars, ‘TAM 111’ and ‘TAM 112’, have been widely grown in the Southern Great Plains of the U.S. and used as parents in many wheat breeding programs worldwide. This study aimed to reveal genetic control of yield and yield components in the two cultivars under both dryland and irrigated conditions. A mapping population containing 124 F5:7 recombinant inbred lines (RILs) was developed from the cross of TAM 112/TAM 111. A set of 5,948 SNPs from the wheat 90K iSelect array and double digest restriction-site associated DNA sequencing was used to construct high-density genetic maps. Data for yield and yield components were obtained from 11 environments. QTL analyses were performed based on 11 individual environments, across all environments, within and across mega-environments. Thirty-six unique consistent QTL regions were distributed on 13 chromosomes including 1A, 1B, 1D, 2A, 2D, 3D, 4B, 4D, 6A, 6B, 6D, 7B, and 7D. Ten unique QTL with pleiotropic effects were identified on four chromosomes and eight were in common with the consistent QTL. These QTL increased dry biomass grain yield by 16.3 g m−2, plot yield by 28.1 g m−2, kernels spike−1 by 0.7, spikes m−2 by 14.8, thousand kernel weight by 0.9 g with favorable alleles from either parent. TAM 112 alleles mainly increased spikes m−2 and thousand kernel weight while TMA 111 alleles increased kernels spike−1, harvest index and grain yield. The saturated genetic map and markers linked to significant QTL from this study will be very useful in developing high throughput genotyping markers for tracking the desirable haplotypes of these important yield-related traits in popular parental cultivars.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0237293
Author(s):  
Yan Yang ◽  
Smit Dhakal ◽  
Chenggen Chu ◽  
Shichen Wang ◽  
Qingwu Xue ◽  
...  

Two drought-tolerant wheat cultivars, ‘TAM 111’ and ‘TAM 112’, have been widely grown in the Southern Great Plains of the U.S. and used as parents in many wheat breeding programs worldwide. This study aimed to reveal genetic control of yield and yield components in the two cultivars under both dryland and irrigated conditions. A mapping population containing 124 F5:7 recombinant inbred lines (RILs) was developed from the cross of TAM 112/TAM 111. A set of 5,948 SNPs from the wheat 90K iSelect array and double digest restriction-site associated DNA sequencing was used to construct high-density genetic maps. Data for yield and yield components were obtained from 11 environments. QTL analyses were performed based on 11 individual environments, across all environments, within and across mega-environments. Thirty-six unique consistent QTL regions were distributed on 13 chromosomes including 1A, 1B, 1D, 2A, 2D, 3D, 4B, 4D, 6A, 6B, 6D, 7B, and 7D. Ten unique QTL with pleiotropic effects were identified on four chromosomes and eight were in common with the consistent QTL. These QTL increased dry biomass grain yield by 16.3 g m-2, plot yield by 28.1 g m-2, kernels spike-1 by 0.7, spikes m-2 by 14.8, thousand kernel weight by 0.9 g with favorable alleles from either parent. TAM 112 alleles mainly increased spikes m-2 and thousand kernel weight while TMA 111 alleles increased kernels spike-1, harvest index and grain yield. The saturated genetic map and markers linked to significant QTL from this study will be very useful in developing high throughput genotyping markers for tracking the desirable haplotypes of these important yield-related traits in popular parental cultivars.


2007 ◽  
Vol 145 (3) ◽  
pp. 239-248 ◽  
Author(s):  
K. F. SOLOMON ◽  
M. T. LABUSCHAGNE ◽  
C. D. VILJOEN

The objectives of the present study were to evaluate heterosis for grain yield and yield components in durum wheat, and to assess the prediction potential of amplified fragment length polymorphism (AFLP) based and agronomic trait based genetic distances (GD and MD, respectively) to F1 performance, mid parent heterosis (MPH), and specific combining ability effects (SCA) under well-watered and moisture stress conditions. Six parental genotypes with different responses to moisture stress and their 15 F1 crosses were evaluated for their responses to moisture stress conditions in a glasshouse. Some cross combinations showed significant MPH for grain yield and yield components. The expression of heterosis for grain yield was greater under moisture stress conditions than under well-watered conditions. Cluster analysis of the parental lines based on agronomic performance under stress conditions was similar to cluster analysis result based on AFLP marker profiles. F1 performance was strongly correlated to both SCA effects and MPH under both stress and well water conditions. The correlation between SCA and MPH was very high under both treatment conditions for all traits. Correlation between GD and MD was significant only under stress conditions. Positive correlation was found only for the association between GD v. F1 performance and GD v. SCA effects for harvest index (HI) under well-watered conditions. None of the correlations between MD and SCA effects were significant. The absence of association between GD and heterosis for yield and most agronomic traits implied that heterozygosity per se diversity is not a good predictor of heterosis or F1 performance under both well-watered and stressed conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Mansouri ◽  
Bachir Oudjehih ◽  
Abdelkader Benbelkacem ◽  
Zine El Abidine Fellahi ◽  
Hamenna Bouzerzour

Relationships among agronomic traits and grain yield were investigated in 56 genotypes of durum wheat (Triticum durumDesf.). The results indicated the presence of sufficient variability nearly for all measured traits. Heritability and expected genetic gain varied among traits. Aboveground biomass, harvest index, and spike number were the most grain yield-influencing traits. Early genotypes showed above-average grain and biological yields, spike number, and lower canopy temperature. Assessed genotypes were clustered into three groups which differed mainly for biological, economical, straw, and grain yields, on the one hand, and plant height, chlorophyll content, and canopy temperature, on the other hand. Selection for direct use from clusters carrying best combinations of yield-related traits and crosses to be made between genotypes belonging to contrasted clusters were suggested to generate more variability. Selection preferentially for spike number, biological yield, harvest index, and canopy temperature to accumulate favorable alleles in the selected entries for future uses is suggested.


1988 ◽  
Vol 17 (3) ◽  
pp. 197-218 ◽  
Author(s):  
Y. P. Puri ◽  
M. F. Miller ◽  
R. N. Sah ◽  
K. G. Baghott ◽  
Elias Freres-Castel ◽  
...  

2014 ◽  
Vol 65 (1) ◽  
pp. 80 ◽  
Author(s):  
M. Graziani ◽  
M. Maccaferri ◽  
C. Royo ◽  
F. Salvatorelli ◽  
R. Tuberosa

Dissection of the genetic basis of the adaptive response of durum wheat to unfavourable water and temperature regimes is an important prerequisite for the selection of genotypes less vulnerable to environmental constraints. An elite durum population of 249 recombinant inbred lines was tested across 16 Mediterranean environments characterised by contrasting thermo-pluviometric conditions and, consequently, a broad range of productivity (from 0.56 to 5.88 t  ha–1). Among the environmental variables investigated, soil moisture during grain filling showed the most consistent correlation with yield components and grain yield, whereas a weaker, albeit in some cases significant, association was noted with temperature at heading and thermal time during grain filling. Ear peduncle length appeared as a valid and easy-to-phenotype morphological proxy for the water available to the plant. In total, 76 quantitative trait loci (QTLs) were identified for yield components and for several morpho-physiological traits (peduncle length, the spectral reflectance index NDVI and leaf greenness at the milk-grain stage expressed in SPAD units) associated with the adaptive response of wheat to water and heat stresses. Although most of the QTLs were significant in only one or two environments, two major QTLs on chromosomes 2BL and 3BS showed consistent additive and epistatic effects on 1000-kernel weight, peduncle length, SPAD values and grain yield in half of the environments. In view of their strong phenotypic effects on kernel weight, these two QTLs are good candidates for positional cloning in order to gain a better understanding of the functional basis of their effect on the plasticity of grain weight and grain yield.


2001 ◽  
Vol 29 (3-4) ◽  
pp. 237-244 ◽  
Author(s):  
A. Blanco ◽  
C. Lotti ◽  
R. Simeone ◽  
A. Signorile ◽  
V. De Santis ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Dejene K. Mengistu ◽  
Yosef G. Kidane ◽  
Carlo Fadda ◽  
Mario Enrico Pè

AbstractThe valorization of genetic diversities of major crops like wheat may help substantially to feed the world Population. Durum wheat genotypes consisting of 265 farmers’ varieties (FVs), which have been cultivated for many centuries in Ethiopia, as well as 24 improved varieties (IMVs) have been recently evaluated in northern Ethiopia. The evaluation has been carried out at two different locations for 2 consecutive years to verify the inherited diversity in FVs for important phenological and agronomic traits; with the intention to provide refined information to breeders and genebank managers. As a result of a careful evaluation, a very significant variation was observed between the FVs and IMVs. A large number of the former have demonstrated superior performance to the latter in terms of mean values of the major traits within the stipulated years and locations. The best performing FV has shown a gain of 20% grain yield over the best IMV. Multivariate analyses revealed that FVs displayed larger genetic diversity than in those IMVs. FVs could therefore be used as donor of useful alleles in durum wheat breeding for improvement of yield per se and other traits of agronomic and phenological importance. The identified stable superior FVs include: 8208, 226834A, 238567, 222426, 226282 could be best candidates for farmers in marginal environments. Genotypes that have shown stable performance for spatial variation such as 204493A, 214357 and 238567; and temporal variation such as 8208, 208479, 214357 and 226834A could be the best candidates for exploitation in future breeding programs.


Author(s):  
Yared Semahegn ◽  
Hussein Shimelis ◽  
Mark Laing ◽  
Isack Mathew

Drought is one of the major constraints to wheat production and productivity globally. Developing drought-adapted wheat cultivars is paramount to increase wheat productivity under variable rainfall conditions. Understanding the genetic variability and trait association is key to the development of improved wheat cultivars. The objective of this study was to determine the extent of the genetic parameters and associations of yield and yield components of bread wheat genotypes, in order to design appropriate breeding strategies for yield improvement in wheat. One hundred and twenty genotypes were evaluated at five test sites in the 2018/19 cropping season using a 10 x 12 alpha lattice design with two replications. Different sowing dates were used to impose contrasting drought stress levels based on the onset of the main seasonal rains at each site. Data were recorded on agronomic traits such as days to heading (DH), days to maturity (DM), plant height (PH), spike length (SL), spikelet per spike (SS), kernel per spike (KS), 1000 kernel weight (TKW) and grain yield (GY). There was significant (p<0.01) genetic variation for all agronomic traits studied under both drought-stressed and non-stressed conditions. The highest estimates for genetic variance were obtained for DH (54.0%), followed by SL (38.3%). The high heritability estimated for DH (94.4%), SL (90.2%) and SS (85.2%), coupled with a high rate of genetic advance, suggest that direct selection for these traits would be effective under drought-stressed conditions. GY exhibited low genetic advance (9%) and heritability (41.5%) estimates, which were concomitant with its polygenic and complex inheritance pattern. Correlation and path analyses revealed that TKW was the most important contributing trait for improving grain yield under drought-stressed conditions


Sign in / Sign up

Export Citation Format

Share Document