scholarly journals Ral GTPases targeted by miR-215-5p promote lung cancer proliferation and migration

2020 ◽  
Author(s):  
Hao Zhu ◽  
Shufang Cui ◽  
Gentao Fan ◽  
Jing Zhang ◽  
Xiaofeng Hua ◽  
...  

Abstract Background The Ras-like guanosine triphosphatases (Ral GTPases) belongs to the Ras superfamily of small GTPases. Ras mutations occur in more than one in three human tumors. However, treatments acting directly on Ras post-translational modifications were developed and have been manufactured for many years, although they have demonstrated poor clinical performance. Ral GTPases include RalA and RalB, seem to be a new potential pathway downstream of mutant Ras. Methods In this study, we examined protein and mRNA level of Ral GTPases in lung specimens from 12 lung cancer patients using Western Blot and RT-PCR. The effects of RalA and RalB on the proliferation and migration were examined by functional tests in vitro and in vivo. The binding site in miR-215-5p and RalA or RalB was predicted using bioinformatics software and proved by Western Blot, RT-PCR and luciferase assay. The effect of miR-215-5p on RalA and RalB were examined in cell lines and xenograft mice. Results Here, we reported that miR-215-5p was downregulated in human lung cancer tissues compared with noncancerous tissues, whereas the expression level of Ral GTPases was higher. We further verified that the negative regulation of Ral GTPases by miR-215-5p could inhibit the proliferation and migration of lung cancer in vitro and in vivo. Conclusion In this study, we reported that RalA and RalB promote lung cancer proliferation and migration. Moreover, we identified miR-215-5p as a tumor suppressor that targets Ral GTPases. Our results may offer therapeutic opportunities in lung cancer.

2019 ◽  
Vol 47 (04) ◽  
pp. 865-878 ◽  
Author(s):  
Wen Zhou ◽  
Yunshan Wu ◽  
Miao Pan ◽  
Daojun Liu ◽  
Bo Liu

Recent evidence suggests that Oxymatrine (OMT) has excellent effects in anticancer. The mechanism, however, remains unclear. In the present study, we investigated the potential mechanism of OMT against cancer. The differential expression of miRNA was screened by miRNA array. The expression of miRNA-520 and VEGF in lung cancer was assayed by real-time PCR, Western blot and immunohistochemistry, respectively. The direct interaction between miRNA-520 and VEGF was assayed by luciferase activity assay and their roles in lung cancer proliferation, invasion and migration were analyzed in vivo and in vitro. We found that miR-520 was markedly down-regulated and VEGF was markedly up-regulated in lung cancer tissues compared with adjacent normal tissues, which had significant negative correlation. Dual-luciferase assays confirmed that miR-520 directly targeting VEGF by binding to its upstream promoter region. Through in vitro and in vivo experiments, we found that different doses of OMT could up-regulate miR-520, selectively inhibit VEGF and thus inhibit the proliferation and migration of lung cancer. Our findings indicate that OMT inhibited cancer progression and metastasis by upregulation of miR-520 and downregulation of VEGF, which provide new support for OMT may be as a novel anticancer drug for the treatment of lung cancer in the future.


Life Sciences ◽  
2021 ◽  
Vol 276 ◽  
pp. 119436
Author(s):  
Keshav Raj Paudel ◽  
Ridhima Wadhwa ◽  
Xin Nee Tew ◽  
Natalie Jia Xin Lau ◽  
Thiagarajan Madheswaran ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2017 ◽  
Vol 42 (4) ◽  
pp. 1670-1683 ◽  
Author(s):  
Yiran Si ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Ming Bai ◽  
Yi Wang ◽  
...  

Background/Aims: Abnormal expression of HGF is found in various cancers and correlates with tumor proliferation, metastasis and angiogenesis. However, the regulatory mechanism of the HGF-VEGF axis remains unclear. Methods: The expression characteristic of HGF in human gastric cancer tissues was shown by an immunohistochemistry assay, and the expression levels of target protein were detected by Western blot. The relative levels of miR-26a/b and target mRNA were examined by qRT-PCR. We used bioinformatics tools to search for miRNAs that can potentially target HGF. A luciferase assay was used to confirm direct targeting. Furthermore, the functions of miR-26a/b and HGF were evaluated by cell proliferation and migration assays in vitro and by the mouse xenograft tumor model in vivo. Results: We found that the HGF protein was clearly increased while miR-26a/b were dramatically down-regulated in gastric cancer. miR-26a/b directly bind to the 3’-UTR of HGF mRNA at specific targeting sites. We demonstrated that the repression of the HGF-VEGF pathway by miR-26a/b overexpression suppressed gastric cancer cell proliferation and migration. Furthermore, miR-26a/b also showed an anti-tumor effect in the xenograft mouse model by suppressing tumor growth and angiogenesis. Conclusions: miR-26a/b could suppress tumor tumorigenesis and angiogenesis by targeting the HGF-VEGF axis and could serve as a potential treatment modality for targeted therapy in the clinical treatment of gastric cancer.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
David Brunn ◽  
Kati Turkowski ◽  
Stefan Günther ◽  
Andreas Weigert ◽  
Thomas Muley ◽  
...  

Transcription factors can serve as links between tumor microenvironment signaling and oncogenesis. Interferon regulatory factor 9 (IRF9) is recruited and expressed upon interferon stimulation and is dependent on cofactors that exert in tumor-suppressing or oncogenic functions via the JAK-STAT pathway. IRF9 is frequently overexpressed in human lung cancer and is associated with decreased patient survival; however, the underlying mechanisms remain to be elucidated. Here, we used stably transduced lung adenocarcinoma cell lines (A549 and A427) to overexpress or knockdown IRF9. Overexpression led to increased oncogenic behavior in vitro, including enhanced proliferation and migration, whereas knockdown reduced these effects. These findings were confirmed in vivo using lung tumor xenografts in nude mice, and effects on both tumor growth and tumor mass were observed. Using RNA sequencing, we identified versican (VCAN) as a novel downstream target of IRF9. Indeed, IRF9 and VCAN expression levels were found to be correlated. We showed for the first time that IRF9 binds at a newly identified response element in the promoter region of VCAN to regulate its transcription. Using an siRNA approach, VCAN was found to enable the oncogenic properties (proliferation and migration) of IRF9 transduced cells, perhaps with CDKN1A involvement. The targeted inhibition of IRF9 in lung cancer could therefore be used as a new treatment option without multimodal interference in microenvironment JAK-STAT signaling.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Yong Lin ◽  
Yushan Chen ◽  
Rongqiang Shen ◽  
Dingzhu Chen ◽  
Yimin Lin

AbstractThis study evaluated microRNA-148a-3p in esophageal carcinoma cells. The prediction of bioinformatics analysis revealed that microRNA-148a-3p may target CEP55. qRT-PCR and western blot showed that CEP55 level in esophageal carcinoma cells and tissue was dramatically higher than that of normal cells and tissue, while microRNA-148a-3p was the opposite. Forced expression of microRNA-148a-3p restrained cell malignant behaviors of esophageal carcinoma, and repression of microRNA-148a-3p resulted in the converse results in terms of cell function. Dual-luciferase assay confirmed that microRNA-148a-3p targeted CEP55. CEP55 attenuated the suppressive effect of microRNA-148a-3p on proliferation and migration of esophageal carcinoma cells, demonstrating that microRNA-148a-3p regulated function of esophageal carcinoma cells via decreasing CEP55 level. Microscopy observation indicated that cell morphology was also affected by the microRNA-148a-3p/CEP55 axis. Furthermore, western blot analysis revealed that the PI3K/AKT signaling pathway could be suppressed by activating the microRNA-148a-3p/CEP55 axis. Finally, in vivo experiments confirmed the effects of microRNA-148a-3p on tumorigenesis. Thus, microRNA-148a-3p could act as a repressor in esophageal carcinoma via binding to CEP55.


2021 ◽  
Author(s):  
Shuchi Xia ◽  
Yiqun Ma

Abstract Background: Osteosarcomas (OS) are the most frequent primary malignant bone tumor. Emerging evidence revealed that karyopherin alpha 2 (KPNA2) was strongly associated with the tumorigenesis and development of numerous human cancers. The aim of the present study was to investigate the expression pattern, biological functions and underlying mechanism of KPNA2 in OS. Methods: Bioinformatics TFBIND online was applied to forecast the transcription factor (TF) binding sites in the promoter region of KPNA2. The expression profile of KPNA2 in OS tissues were firstly assessed using TARGET dataset. The expression of KPNA2 in clinical OS samples and normal human adjacent samples were analyzed by RT-qPCR and western blot. CCK8, colony formation, wound-healing, and Transwell assays were used to assess cell viability, proliferation and migration in vitro, and in vivo experiments were performed to explore the effects of KPNA2 and interferon regulatory factor-2 (IRF2) on tumor growth. In addition, the correlation between IRF2 and KPNA2, and their roles on the NF-κB/p65 was investigated using chromatin immunoprecipitation (ChIP), RT-qPCR, western blot and dual-luciferase assays. Results: KPNA2 was obviously upregulated while IRF2 was significantly decreased in OS tissues and cell lines, as well as they were negatively correlated with each other. KPNA2 knockdown remarkably suppressed OS cell growth, migration, invasion in vitro and tumor growth in vivo, while IRF2 knockdown exerts an opposing effect. IRF2 binds to KPNA2 promoter to modulate the tumorigenic malignant phenotypes of OS via regulating NF-κB/p65 signaling. Conclusion: The present study demonstrated that KPNA2 performed the oncogenic function, possibly regulating tumorigenesis through NF-κB/p65 signaling pathway. Importantly, IRF2 was confirmed to serve a potential upstream TF of KPNA2 involving in the regulation of NF-κB/p65 pathway in OS.


2021 ◽  
Vol 22 (20) ◽  
pp. 10930
Author(s):  
Shuai Guo ◽  
Xue Bai ◽  
Sai Shi ◽  
Yawen Deng ◽  
Xianjiang Kang ◽  
...  

Lung cancer has the highest rate of incidence and mortality among all cancers. Most chemotherapeutic drugs used to treat lung cancer cause serious side effects and are susceptible to drug resistance. Therefore, exploring novel therapeutic targets for lung cancer is important. In this study, we evaluated the potential of TMEM16A as a drug target for lung cancer. Homoharringtonine (HHT) was identified as a novel natural product inhibitor of TMEM16A. Patch-clamp experiments showed that HHT inhibited TMEM16A activity in a concentration-dependent manner. HHT significantly inhibited the proliferation and migration of lung cancer cells with high TMEM16A expression but did not affect the growth of normal lung cells in the absence of TMEM16A expression. In vivo experiments showed that HHT inhibited the growth of lung tumors in mice and did not reduce their body weight. Finally, the molecular mechanism through which HHT inhibits lung cancer was explored by western blotting. The findings showed that HHT has the potential to regulate TMEM16A activity both in vitro and in vivo and could be a new lead compound for the development of anti-lung-cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document