oncogenic function
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 70)

H-INDEX

36
(FIVE YEARS 6)

Blood ◽  
2022 ◽  
Author(s):  
Mateusz Antoszewski ◽  
Nadine Fournier ◽  
Gustavo A Ruiz Buendía ◽  
Joao Lourenco ◽  
Yuanlong Liu ◽  
...  

NOTCH1 is a well-established lineage specifier for T cells and amongst the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of pre-leukemic cells to full-blown disease.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261464
Author(s):  
Ivan Vannini ◽  
Manuela Ferracin ◽  
Francesco Fabbri ◽  
Muller Fabbri

The expression of non–coding RNAs (ncRNAs) is dysregulated in human cancers. The transcribed ultraconserved regions (T-UCRs) express long ncRNAs involved in human carcinogenesis. T-UCRs are non-coding genomic sequence that are 100% conserved across humans, rats and mice. Conservation of genomic sequences across species intrinsically implies an essential functional role and so we considered the expression of T-UCRs in lung cancer. Using a custom microarray we analyzed the global expression of T-UCRs. Among these T-UCRs, the greatest variation was observed for antisense ultraconserved element 83 (uc.83-), which was upregulated in human lung cancer tissues compared with adjacent non cancerous tissues. Even though uc.83- is located within the long intergenic non-protein coding RNA 1876 (LINC01876) gene, we found that the transcribed uc.83- is expressed independently of LINC01876 and was cloned as a 1143-bp RNA gene. In this study, functional analysis confirmed important effects of uc.83- on genes involved in cell growth of human cells. siRNA against uc.83- decreased the growth of lung cancer cells while the upregulation through a vector overexpressing the uc.83- RNA increased cell proliferation. We also show the oncogenic function of uc.83- is mediated by the phosphorylation of AKT and ERK 1/2, two important biomarkers of lung cancer cell proliferation. Based on our findings, inhibition against uc.83- could be a future therapeutic treatment for NSCLC to achieve simultaneous blockade of pathways involved in lung carcinogenesis.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Yeling Liu ◽  
Jingrui Chen ◽  
Lizhong Zhou ◽  
Chunhua Yin

Abstract Background Cervical cancer (CC) is one of the most common malignancies affecting female worldwide. Long non-coding RNAs (lncRNAs) are increasingly indicated as crucial participants and promising therapeutic targets in human cancers. The main objective of this study was to explore the functions and mechanism of LINC00885 in CC. Methods RT-qPCR and western blot were used to detect RNA and protein levels. Functional and mechanism assays were respectively done for the analysis of cell behaviors and molecular interplays. Results Long intergenic non-coding RNA 885 (LINC00885) was discovered to be upregulated in CC tissues and cell lines through bioinformatics analysis and RT-qPCR. Overexpression of LINC00885 promoted proliferation and inhibited apoptosis, whereas its silence exerted opposite effects. The cytoplasmic localization of LINC00885 was ascertained and furthermore, LINC00885 competitively bound with miR-3150b-3p to upregulate BAZ2A expression in CC cells. Rescue assays confirmed that LINC00885 regulated CC proliferation and apoptosis through miR-3150b-3p/BAZ2A axis. Finally, we confirmed that LINC00885 aggravated tumor growth through animal experiments. Conclusions LINC00885 exerted oncogenic function in CC via regulating miR-3150b-3p/BAZ2A axis. These findings suggested LINC00885 might serve as a potential promising therapeutic target for CC patients.


Author(s):  
Chunhui Zhou ◽  
Hulin Zhao ◽  
Shuiwei Wang ◽  
Chao Dong ◽  
Fan Yang ◽  
...  

The long non‐coding RNA antisense 1 ADAMTS9-AS1 has been reported to serve as an oncogene or tumor suppressor in several tumors, including colorectal cancer and hepatocellular carcinoma. Nevertheless, the clinical significance and biological behaviors of ADAMTS9-AS1 in glioma still remain unclear. Therefore, the goal of this study was to evaluate the functional roles and potential mechanisms of ADAMTS9-AS1 in glioma cells. Using quantitative real-time PCR analysis, we found that ADAMTS9-AS1 was upregulated in glioma tissues and cells in comparison to corresponding controls. ADAMTS9-AS1 expression level was correlated to tumor size (p=0.005) and WHO grade (p=0.002). Kaplan-Meier analysis and Cox multivariate analysis showed that ADAMTS9-AS1 could serve as an independent prognostic factor affecting the overall survival of glioma patients. Functionally, depletion of ADAMTS9-AS1 significantly suppressed the proliferation, migration and invasion in glioma cell lines (U251 and U87), as shown via CCK-8 assay, Edu corporation assay, wound healing assay and transwell assay. Furthermore, we demonstrated that knockdown of ADAMTS9-AS1 suppressed Wnt1, β-catenin, c-myc and PCNA, while upregulating E-cadherin expression. In conclusion, our data revealed that ADAMTS9-AS1 confers oncogenic function in the progression of glioma, thus targeting ADAMTS9-AS1 might be a promising therapeutic strategy for this disease.


2021 ◽  
Author(s):  
Jiaqing Yi ◽  
Xuanming Shi ◽  
Xiaoming Zhan ◽  
Richard Q Lu ◽  
Zhenyu Xuan ◽  
...  

AbstractIntratumor epigenetic heterogeneity is emerging as a key mechanism underlying tumor evolution and drug resistance. Medulloblastomas, the most common childhood malignant brain tumor, are classified into four subtypes including SHH medulloblastomas, which are characterized by elevated SHH signaling and a cerebellum granule neuron precursor (CGNP) cell-of-origin. Medulloblastomas are highly associated with epigenetic abnormalities. We observed that the histone H3K27 methyltransferase polycomb repressor complex 2 (PRC2) is often heterogeneous within individual SHH medulloblastoma tumors. Using mouse models, we showed that while a complete deletion of the PRC2 core subunit EED inhibited medulloblastoma growth, a mosaic deletion of EED significantly enhanced tumor growth. EED is intrinsically required for CGNP maintenance by inhibiting both neural differentiation and cell death. Complete EED deletion led to CGNP depletion and reduced occurrence of medulloblastoma. Surprisingly, we found that medulloblastomas with mosaic EED levels grew faster than did control wildtype tumors and expressed increased levels of oncogenes such as Igf2. Igf2 is directly repressed by PRC2 and has been demonstrated to be both necessary and sufficient for SHH medulloblastoma progression. We showed that IGF2 mediated the oncogenic effects of PRC2 heterogeneity in tumor growth. Using a human medulloblastoma cell line, we generated clones with different EED levels and confirmed that EEDlow cells could stimulate the growth of EEDhigh cells through derepressed IGF2 signals. Thus, PRC2 heterogeneity controls medulloblastoma growth through both intrinsic growth competence and non-cell autonomous mechanisms in distinct tumor subclones. We reveal a novel oncogenic function of PRC2 heterogeneity in tumor development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chandrani Mukhopadhyay ◽  
Chenyi Yang ◽  
Limei Xu ◽  
Deli Liu ◽  
Yu Wang ◽  
...  

AbstractSPOP, an E3 ubiquitin ligase, acts as a prostate-specific tumor suppressor with several key substrates mediating oncogenic function. However, the mechanisms underlying SPOP regulation are largely unknown. Here, we have identified G3BP1 as an interactor of SPOP and functions as a competitive inhibitor of Cul3SPOP, suggesting a distinctive mode of Cul3SPOP inactivation in prostate cancer (PCa). Transcriptomic analysis and functional studies reveal a G3BP1-SPOP ubiquitin signaling axis that promotes PCa progression through activating AR signaling. Moreover, AR directly upregulates G3BP1 transcription to further amplify G3BP1-SPOP signaling in a feed-forward manner. Our study supports a fundamental role of G3BP1 in disabling the tumor suppressive Cul3SPOP, thus defining a PCa cohort independent of SPOP mutation. Therefore, there are significantly more PCa that are defective for SPOP ubiquitin ligase than previously appreciated, and these G3BP1high PCa are more susceptible to AR-targeted therapy.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Bingyan Li ◽  
Guang Zhang ◽  
Zhongyu Wang ◽  
Yang Yang ◽  
Chenfeng Wang ◽  
...  

AbstractThe c-Myc oncoprotein plays a prominent role in cancer initiation, progression, and maintenance. Long noncoding RNAs (lncRNAs) are recently emerging as critical regulators of the c-Myc signaling pathway. Here, we report the lncRNA USP2-AS1 as a direct transcriptional target of c-Myc. Functionally, USP2-AS1 inhibits cellular senescence and acts as an oncogenic molecule by inducing E2F1 expression. Mechanistically, USP2-AS1 associates with the RNA-binding protein G3BP1 and facilitates the interaction of G3BP1 to E2F1 3′-untranslated region, thereby leading to the stabilization of E2F1 messenger RNA. Furthermore, USP2-AS1 is shown as a mediator of the oncogenic function of c-Myc via the regulation of E2F1. Together, these findings suggest that USP2-AS1 is a negative regulator of cellular senescence and also implicates USP2-AS1 as an important player in mediating c-Myc function.


2021 ◽  
Author(s):  
Shuchi Xia ◽  
Yiqun Ma

Abstract Background: Osteosarcomas (OS) are the most frequent primary malignant bone tumor. Emerging evidence revealed that karyopherin alpha 2 (KPNA2) was strongly associated with the tumorigenesis and development of numerous human cancers. The aim of the present study was to investigate the expression pattern, biological functions and underlying mechanism of KPNA2 in OS. Methods: Bioinformatics TFBIND online was applied to forecast the transcription factor (TF) binding sites in the promoter region of KPNA2. The expression profile of KPNA2 in OS tissues were firstly assessed using TARGET dataset. The expression of KPNA2 in clinical OS samples and normal human adjacent samples were analyzed by RT-qPCR and western blot. CCK8, colony formation, wound-healing, and Transwell assays were used to assess cell viability, proliferation and migration in vitro, and in vivo experiments were performed to explore the effects of KPNA2 and interferon regulatory factor-2 (IRF2) on tumor growth. In addition, the correlation between IRF2 and KPNA2, and their roles on the NF-κB/p65 was investigated using chromatin immunoprecipitation (ChIP), RT-qPCR, western blot and dual-luciferase assays. Results: KPNA2 was obviously upregulated while IRF2 was significantly decreased in OS tissues and cell lines, as well as they were negatively correlated with each other. KPNA2 knockdown remarkably suppressed OS cell growth, migration, invasion in vitro and tumor growth in vivo, while IRF2 knockdown exerts an opposing effect. IRF2 binds to KPNA2 promoter to modulate the tumorigenic malignant phenotypes of OS via regulating NF-κB/p65 signaling. Conclusion: The present study demonstrated that KPNA2 performed the oncogenic function, possibly regulating tumorigenesis through NF-κB/p65 signaling pathway. Importantly, IRF2 was confirmed to serve a potential upstream TF of KPNA2 involving in the regulation of NF-κB/p65 pathway in OS.


Oncogene ◽  
2021 ◽  
Author(s):  
Rahul Kanumuri ◽  
Aruna Kumar Chelluboyina ◽  
Jayashree Biswal ◽  
Ravichandran Vignesh ◽  
Jaishree Pandian ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guangsu Xun ◽  
Wei Hu ◽  
Bing Li

AbstractAmong all cancer types, lung cancer has already become the leading cause of cancer-related death around the world. The molecular mechanism understanding this development is still needed to be improved to treat lung cancer. Stathmin (STMN1) was initially identified as a cytoplasmic protein phosphorylated responding to cell signal and controlled cell physiological processes. The dysregulation of STMN1 is found in various kinds of tumors. However, the molecular mechanism of STMN1 regulating lung cancer is still unclear. Here, we found that STMN1 was overexpressed in lung cancer tissues and associated with worse survival rates of lung cancer patients. Inhibition of STMN1 suppressed lung cancer cell growth, migration and invasion, and promoted drug sensitivity. Moreover, PTEN loss promoted STMN1 expression via PI3K/AKT pathway. PTEN loss ameliorated the inhibition of cell growth, migration and invasion, and drug sensitivity induced by STMN1 knockdown in lung cancer. The high expression of STMN1 was negatively correlated with the low expression of PTEN in lung cancer specimens. Overall, our work demonstrated that PTEN regulated the oncogenic function of STMN1 in lung cancer.


Sign in / Sign up

Export Citation Format

Share Document